Skip to main content
The American Journal of Pathology logoLink to The American Journal of Pathology
. 1995 Jun;146(6):1341–1354.

Detection of chromosomal imbalances in transitional cell carcinoma of the bladder by comparative genomic hybridization.

C Voorter 1, S Joos 1, P P Bringuier 1, M Vallinga 1, P Poddighe 1, J Schalken 1, S du Manoir 1, F Ramaekers 1, P Lichter 1, A Hopman 1
PMCID: PMC1870895  PMID: 7778674

Abstract

Comparative genomic hybridization (CGH) was applied for a comprehensive screening of chromosomal aberrations in 14 transitional cell carcinomas of the bladder of different grade and stage. The results were compared in a number of selected cases with those obtained by restriction fragment length polymorphism analyses and targeted fluorescence in situ hybridization. Distinct amplifications, found with CGH, were located on 3p22-24, 10p13-14, 12q13-15, 17q22-23, 18p11, and 22q11-13. These high copy number amplifications and the frequency of imbalances involving chromosome 5, occurring in 4 of 14 cases, have not yet been identified in transitional cell carcinomas. Apart from these new aberrations, imbalances were detected in 3 or more cases for chromosomes 9 and 11, as already described previously in the literature. In four tumors, the copy number of specific chromosomal regions was also analyzed by interphase cytogenetics. Although in most instances the CGH data were confirmed, in one tumor, distinct differences were observed, possibly a result of heterogeneity of the tumor cell population. Furthermore, the CGH data were compared with loss of heterozygosity as revealed by restriction fragment length polymorphism analysis in the same tumors. In 80% of informative cases, no loss was detected by restriction fragment length polymorphism or by CGH. Of the 15 cases of loss of heterozygosity, 7 showed a loss also with CGH, whereas in 8 cases no loss was observed. In summary, CGH is a fast method to obtain a comprehensive picture of chromosomal imbalances in transitional cell carcinomas, including a number of previously unknown genomic alterations such as high level amplifications.

Full text

PDF
1341

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brookes S., Lammie G. A., Schuuring E., Dickson C., Peters G. Linkage map of a region of human chromosome band 11q13 amplified in breast and squamous cell tumors. Genes Chromosomes Cancer. 1992 Jun;4(4):290–301. doi: 10.1002/gcc.2870040404. [DOI] [PubMed] [Google Scholar]
  2. Cairns P., Proctor A. J., Knowles M. A. Loss of heterozygosity at the RB locus is frequent and correlates with muscle invasion in bladder carcinoma. Oncogene. 1991 Dec;6(12):2305–2309. [PubMed] [Google Scholar]
  3. Cairns P., Shaw M. E., Knowles M. A. Preliminary mapping of the deleted region of chromosome 9 in bladder cancer. Cancer Res. 1993 Mar 15;53(6):1230–1232. [PubMed] [Google Scholar]
  4. Cairns P., Tokino K., Eby Y., Sidransky D. Homozygous deletions of 9p21 in primary human bladder tumors detected by comparative multiplex polymerase chain reaction. Cancer Res. 1994 Mar 15;54(6):1422–1424. [PubMed] [Google Scholar]
  5. Carter B. S., Ewing C. M., Ward W. S., Treiger B. F., Aalders T. W., Schalken J. A., Epstein J. I., Isaacs W. B. Allelic loss of chromosomes 16q and 10q in human prostate cancer. Proc Natl Acad Sci U S A. 1990 Nov;87(22):8751–8755. doi: 10.1073/pnas.87.22.8751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Coombs L. M., Pigott D. A., Sweeney E., Proctor A. J., Eydmann M. E., Parkinson C., Knowles M. A. Amplification and over-expression of c-erbB-2 in transitional cell carcinoma of the urinary bladder. Br J Cancer. 1991 Apr;63(4):601–608. doi: 10.1038/bjc.1991.139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dalbagni G., Presti J., Reuter V., Fair W. R., Cordon-Cardo C. Genetic alterations in bladder cancer. Lancet. 1993 Aug 21;342(8869):469–471. doi: 10.1016/0140-6736(93)91595-d. [DOI] [PubMed] [Google Scholar]
  8. Fearon E. R., Feinberg A. P., Hamilton S. H., Vogelstein B. Loss of genes on the short arm of chromosome 11 in bladder cancer. 1985 Nov 28-Dec 4Nature. 318(6044):377–380. doi: 10.1038/318377a0. [DOI] [PubMed] [Google Scholar]
  9. Fearon E. R., Vogelstein B., Feinberg A. P. Somatic deletion and duplication of genes on chromosome 11 in Wilms' tumours. Nature. 1984 May 10;309(5964):176–178. doi: 10.1038/309176a0. [DOI] [PubMed] [Google Scholar]
  10. Groden J., Thliveris A., Samowitz W., Carlson M., Gelbert L., Albertsen H., Joslyn G., Stevens J., Spirio L., Robertson M. Identification and characterization of the familial adenomatous polyposis coli gene. Cell. 1991 Aug 9;66(3):589–600. doi: 10.1016/0092-8674(81)90021-0. [DOI] [PubMed] [Google Scholar]
  11. Hopman A. H., Moesker O., Smeets A. W., Pauwels R. P., Vooijs G. P., Ramaekers F. C. Numerical chromosome 1, 7, 9, and 11 aberrations in bladder cancer detected by in situ hybridization. Cancer Res. 1991 Jan 15;51(2):644–651. [PubMed] [Google Scholar]
  12. Hopman A. H., Poddighe P. J., Smeets A. W., Moesker O., Beck J. L., Vooijs G. P., Ramaekers F. C. Detection of numerical chromosome aberrations in bladder cancer by in situ hybridization. Am J Pathol. 1989 Dec;135(6):1105–1117. [PMC free article] [PubMed] [Google Scholar]
  13. Hopman A. H., Ramaekers F. C., Raap A. K., Beck J. L., Devilee P., van der Ploeg M., Vooijs G. P. In situ hybridization as a tool to study numerical chromosome aberrations in solid bladder tumors. Histochemistry. 1988;89(4):307–316. doi: 10.1007/BF00500631. [DOI] [PubMed] [Google Scholar]
  14. Hopman A. H., van Hooren E., van de Kaa C. A., Vooijs P. G., Ramaekers F. C. Detection of numerical chromosome aberrations using in situ hybridization in paraffin sections of routinely processed bladder cancers. Mod Pathol. 1991 Jul;4(4):503–513. [PubMed] [Google Scholar]
  15. Joos S., Falk M. H., Lichter P., Haluska F. G., Henglein B., Lenoir G. M., Bornkamm G. W. Variable breakpoints in Burkitt lymphoma cells with chromosomal t(8;14) translocation separate c-myc and the IgH locus up to several hundred kb. Hum Mol Genet. 1992 Nov;1(8):625–632. doi: 10.1093/hmg/1.8.625. [DOI] [PubMed] [Google Scholar]
  16. Joos S., Scherthan H., Speicher M. R., Schlegel J., Cremer T., Lichter P. Detection of amplified DNA sequences by reverse chromosome painting using genomic tumor DNA as probe. Hum Genet. 1993 Feb;90(6):584–589. doi: 10.1007/BF00202475. [DOI] [PubMed] [Google Scholar]
  17. Kallioniemi A., Kallioniemi O. P., Piper J., Tanner M., Stokke T., Chen L., Smith H. S., Pinkel D., Gray J. W., Waldman F. M. Detection and mapping of amplified DNA sequences in breast cancer by comparative genomic hybridization. Proc Natl Acad Sci U S A. 1994 Mar 15;91(6):2156–2160. doi: 10.1073/pnas.91.6.2156. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kallioniemi A., Kallioniemi O. P., Sudar D., Rutovitz D., Gray J. W., Waldman F., Pinkel D. Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science. 1992 Oct 30;258(5083):818–821. doi: 10.1126/science.1359641. [DOI] [PubMed] [Google Scholar]
  19. Kallioniemi O. P., Kallioniemi A., Sudar D., Rutovitz D., Gray J. W., Waldman F., Pinkel D. Comparative genomic hybridization: a rapid new method for detecting and mapping DNA amplification in tumors. Semin Cancer Biol. 1993 Feb;4(1):41–46. [PubMed] [Google Scholar]
  20. Kinzler K. W., Nilbert M. C., Su L. K., Vogelstein B., Bryan T. M., Levy D. B., Smith K. J., Preisinger A. C., Hedge P., McKechnie D. Identification of FAP locus genes from chromosome 5q21. Science. 1991 Aug 9;253(5020):661–665. doi: 10.1126/science.1651562. [DOI] [PubMed] [Google Scholar]
  21. Knowles M. A., Elder P. A., Williamson M., Cairns J. P., Shaw M. E., Law M. G. Allelotype of human bladder cancer. Cancer Res. 1994 Jan 15;54(2):531–538. [PubMed] [Google Scholar]
  22. Le Beau M. M., Espinosa R., 3rd, Neuman W. L., Stock W., Roulston D., Larson R. A., Keinanen M., Westbrook C. A. Cytogenetic and molecular delineation of the smallest commonly deleted region of chromosome 5 in malignant myeloid diseases. Proc Natl Acad Sci U S A. 1993 Jun 15;90(12):5484–5488. doi: 10.1073/pnas.90.12.5484. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lianes P., Orlow I., Zhang Z. F., Oliva M. R., Sarkis A. S., Reuter V. E., Cordon-Cardo C. Altered patterns of MDM2 and TP53 expression in human bladder cancer. J Natl Cancer Inst. 1994 Sep 7;86(17):1325–1330. doi: 10.1093/jnci/86.17.1325. [DOI] [PubMed] [Google Scholar]
  24. Linnenbach A. J., Pressler L. B., Seng B. A., Kimmel B. S., Tomaszewski J. E., Malkowicz S. B. Characterization of chromosome 9 deletions in transitional cell carcinoma by microsatellite assay. Hum Mol Genet. 1993 Sep;2(9):1407–1411. doi: 10.1093/hmg/2.9.1407. [DOI] [PubMed] [Google Scholar]
  25. Looijenga L. H., Smit V. T., Wessels J. W., Mollevanger P., Oosterhuis J. W., Cornelisse C. J., Devilee P. Localization and polymorphism of a chromosome 12-specific alpha satellite DNA sequence. Cytogenet Cell Genet. 1990;53(4):216–218. doi: 10.1159/000132934. [DOI] [PubMed] [Google Scholar]
  26. Ludwig C. U., Raefle G., Dalquen P., Stulz P., Stahel R., Obrecht J. P. Allelic loss on the short arm of chromosome 11 in non-small-cell lung cancer. Int J Cancer. 1991 Nov 11;49(5):661–665. doi: 10.1002/ijc.2910490506. [DOI] [PubMed] [Google Scholar]
  27. Lunec J., Challen C., Wright C., Mellon K., Neal D. E. c-erbB-2 amplification and identical p53 mutations in concomitant transitional carcinomas of renal pelvis and urinary bladder. Lancet. 1992 Feb 15;339(8790):439–440. doi: 10.1016/0140-6736(92)90135-p. [DOI] [PubMed] [Google Scholar]
  28. Mansouri A., Spurr N., Goodfellow P. N., Kemler R. Characterization and chromosomal localization of the gene encoding the human cell adhesion molecule uvomorulin. Differentiation. 1988 Jun;38(1):67–71. doi: 10.1111/j.1432-0436.1988.tb00593.x. [DOI] [PubMed] [Google Scholar]
  29. Miller S. A., Dykes D. D., Polesky H. F. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988 Feb 11;16(3):1215–1215. doi: 10.1093/nar/16.3.1215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Miura I., Graziano S. L., Cheng J. Q., Doyle L. A., Testa J. R. Chromosome alterations in human small cell lung cancer: frequent involvement of 5q. Cancer Res. 1992 Mar 1;52(5):1322–1328. [PubMed] [Google Scholar]
  31. Miyao N., Tsai Y. C., Lerner S. P., Olumi A. F., Spruck C. H., 3rd, Gonzalez-Zulueta M., Nichols P. W., Skinner D. G., Jones P. A. Role of chromosome 9 in human bladder cancer. Cancer Res. 1993 Sep 1;53(17):4066–4070. [PubMed] [Google Scholar]
  32. Muleris M., Almeida A., Gerbault-Seureau M., Malfoy B., Dutrillaux B. Detection of DNA amplification in 17 primary breast carcinomas with homogeneously staining regions by a modified comparative genomic hybridization technique. Genes Chromosomes Cancer. 1994 Jul;10(3):160–170. doi: 10.1002/gcc.2870100303. [DOI] [PubMed] [Google Scholar]
  33. Olumi A. F., Tsai Y. C., Nichols P. W., Skinner D. G., Cain D. R., Bender L. I., Jones P. A. Allelic loss of chromosome 17p distinguishes high grade from low grade transitional cell carcinomas of the bladder. Cancer Res. 1990 Nov 1;50(21):7081–7083. [PubMed] [Google Scholar]
  34. Pinkel D., Straume T., Gray J. W. Cytogenetic analysis using quantitative, high-sensitivity, fluorescence hybridization. Proc Natl Acad Sci U S A. 1986 May;83(9):2934–2938. doi: 10.1073/pnas.83.9.2934. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Poddighe P. J., Ramaekers F. C., Smeets A. W., Vooijs G. P., Hopman A. H. Structural chromosome 1 aberrations in transitional cell carcinoma of the bladder: interphase cytogenetics combining a centromeric, telomeric, and library DNA probe. Cancer Res. 1992 Sep 15;52(18):4929–4934. [PubMed] [Google Scholar]
  36. Presti J. C., Jr, Reuter V. E., Galan T., Fair W. R., Cordon-Cardo C. Molecular genetic alterations in superficial and locally advanced human bladder cancer. Cancer Res. 1991 Oct 1;51(19):5405–5409. [PubMed] [Google Scholar]
  37. Proctor A. J., Coombs L. M., Cairns J. P., Knowles M. A. Amplification at chromosome 11q13 in transitional cell tumours of the bladder. Oncogene. 1991 May;6(5):789–795. [PubMed] [Google Scholar]
  38. Ried T., Petersen I., Holtgreve-Grez H., Speicher M. R., Schröck E., du Manoir S., Cremer T. Mapping of multiple DNA gains and losses in primary small cell lung carcinomas by comparative genomic hybridization. Cancer Res. 1994 Apr 1;54(7):1801–1806. [PubMed] [Google Scholar]
  39. Ruppert J. M., Tokino K., Sidransky D. Evidence for two bladder cancer suppressor loci on human chromosome 9. Cancer Res. 1993 Nov 1;53(21):5093–5095. [PubMed] [Google Scholar]
  40. Sandberg A. A., Berger C. S. Review of chromosome studies in urological tumors. II. Cytogenetics and molecular genetics of bladder cancer. J Urol. 1994 Mar;151(3):545–560. doi: 10.1016/s0022-5347(17)35014-0. [DOI] [PubMed] [Google Scholar]
  41. Sauter G., Deng G., Moch H., Kerschmann R., Matsumura K., De Vries S., George T., Fuentes J., Carroll P., Mihatsch M. J. Physical deletion of the p53 gene in bladder cancer. Detection by fluorescence in situ hybridization. Am J Pathol. 1994 Apr;144(4):756–766. [PMC free article] [PubMed] [Google Scholar]
  42. Sauter G., Moch H., Moore D., Carroll P., Kerschmann R., Chew K., Mihatsch M. J., Gudat F., Waldman F. Heterogeneity of erbB-2 gene amplification in bladder cancer. Cancer Res. 1993 May 15;53(10 Suppl):2199–2203. [PubMed] [Google Scholar]
  43. Schröck E., Thiel G., Lozanova T., du Manoir S., Meffert M. C., Jauch A., Speicher M. R., Nürnberg P., Vogel S., Jänisch W. Comparative genomic hybridization of human malignant gliomas reveals multiple amplification sites and nonrandom chromosomal gains and losses. Am J Pathol. 1994 Jun;144(6):1203–1218. [PMC free article] [PubMed] [Google Scholar]
  44. Shipman R., Schraml P., Colombi M., Raefle G., Ludwig C. U. Loss of heterozygosity on chromosome 11p13 in primary bladder carcinoma. Hum Genet. 1993 Jun;91(5):455–458. doi: 10.1007/BF00217771. [DOI] [PubMed] [Google Scholar]
  45. Sidransky D., Von Eschenbach A., Tsai Y. C., Jones P., Summerhayes I., Marshall F., Paul M., Green P., Hamilton S. R., Frost P. Identification of p53 gene mutations in bladder cancers and urine samples. Science. 1991 May 3;252(5006):706–709. doi: 10.1126/science.2024123. [DOI] [PubMed] [Google Scholar]
  46. Speicher M. R., du Manoir S., Schröck E., Holtgreve-Grez H., Schoell B., Lengauer C., Cremer T., Ried T. Molecular cytogenetic analysis of formalin-fixed, paraffin-embedded solid tumors by comparative genomic hybridization after universal DNA-amplification. Hum Mol Genet. 1993 Nov;2(11):1907–1914. doi: 10.1093/hmg/2.11.1907. [DOI] [PubMed] [Google Scholar]
  47. Spruck C. H., 3rd, Ohneseit P. F., Gonzalez-Zulueta M., Esrig D., Miyao N., Tsai Y. C., Lerner S. P., Schmütte C., Yang A. S., Cote R. Two molecular pathways to transitional cell carcinoma of the bladder. Cancer Res. 1994 Feb 1;54(3):784–788. [PubMed] [Google Scholar]
  48. Stadler W. M., Sherman J., Bohlander S. K., Roulston D., Dreyling M., Rukstalis D., Olopade O. I. Homozygous deletions within chromosomal bands 9p21-22 in bladder cancer. Cancer Res. 1994 Apr 15;54(8):2060–2063. [PubMed] [Google Scholar]
  49. Suijkerbuijk R. F., Olde Weghuis D. E., Van den Berg M., Pedeutour F., Forus A., Myklebost O., Glier C., Turc-Carel C., Geurts van Kessel A. Comparative genomic hybridization as a tool to define two distinct chromosome 12-derived amplification units in well-differentiated liposarcomas. Genes Chromosomes Cancer. 1994 Apr;9(4):292–295. doi: 10.1002/gcc.2870090410. [DOI] [PubMed] [Google Scholar]
  50. Tokino T., Takahashi E., Mori M., Tanigami A., Glaser T., Park J. W., Jones C., Hori T., Nakamura Y. Isolation and mapping of 62 new RFLP markers on human chromosome 11. Am J Hum Genet. 1991 Feb;48(2):258–268. [PMC free article] [PubMed] [Google Scholar]
  51. Tribukait B., Granberg-Ohman I., Wijkström H. Flow cytometric DNA and cytogenetic studies in human tumors: a comparison and discussion of the differences in modal values obtained by the two methods. Cytometry. 1986 Mar;7(2):194–199. doi: 10.1002/cyto.990070211. [DOI] [PubMed] [Google Scholar]
  52. Tsai Y. C., Nichols P. W., Hiti A. L., Williams Z., Skinner D. G., Jones P. A. Allelic losses of chromosomes 9, 11, and 17 in human bladder cancer. Cancer Res. 1990 Jan 1;50(1):44–47. [PubMed] [Google Scholar]
  53. Van Camp G., Backhovens H., Cruts M., Wehnert A., Van Hul W., Stinissen P., Van Broeckhoven C. Identification of chromosome 21 DNA polymorphisms for genetic studies in Alzheimer's disease and Down syndrome. Hum Genet. 1991 Oct;87(6):649–653. doi: 10.1007/BF00201718. [DOI] [PubMed] [Google Scholar]
  54. Waldman F. M., Carroll P. R., Kerschmann R., Cohen M. B., Field F. G., Mayall B. H. Centromeric copy number of chromosome 7 is strongly correlated with tumor grade and labeling index in human bladder cancer. Cancer Res. 1991 Jul 15;51(14):3807–3813. [PubMed] [Google Scholar]
  55. Wheeless L. L., Badalament R. A., de Vere White R. W., Fradet Y., Tribukait B. Consensus review of the clinical utility of DNA cytometry in bladder cancer. Report of the DNA Cytometry Consensus Conference. Cytometry. 1993;14(5):478–481. doi: 10.1002/cyto.990140504. [DOI] [PubMed] [Google Scholar]
  56. Wood S., Schertzer M., Drabkin H., Patterson D., Longmire J. L., Deaven L. L. Characterization of a human chromosome 8 cosmid library constructed from flow-sorted chromosomes. Cytogenet Cell Genet. 1992;59(4):243–247. doi: 10.1159/000133260. [DOI] [PubMed] [Google Scholar]
  57. du Manoir S., Schröck E., Bentz M., Speicher M. R., Joos S., Ried T., Lichter P., Cremer T. Quantitative analysis of comparative genomic hybridization. Cytometry. 1995 Jan 1;19(1):27–41. doi: 10.1002/cyto.990190105. [DOI] [PubMed] [Google Scholar]
  58. du Manoir S., Speicher M. R., Joos S., Schröck E., Popp S., Döhner H., Kovacs G., Robert-Nicoud M., Lichter P., Cremer T. Detection of complete and partial chromosome gains and losses by comparative genomic in situ hybridization. Hum Genet. 1993 Feb;90(6):590–610. doi: 10.1007/BF00202476. [DOI] [PubMed] [Google Scholar]

Articles from The American Journal of Pathology are provided here courtesy of American Society for Investigative Pathology

RESOURCES