Abstract
The mechanical disturbance after unilateral ureteral obstruction (UUO) is a nonimmune stimulus that is capable of eliciting a florid macrophage infiltration of the kidney and subsequent post-inflammatory renal scarring. Osteopontin has potential chemoattractant activity and, for this reason, we delineated the kinetics of its expression in the renal cortex of rats with UUO. Whole body X-irradiation and reversal of UUO were utilized as interventional maneuvers to give additional pathobiological insight into this protein's role in the response of the kidneys to ureteral obstruction. Increased osteopontin mRNA levels in obstructed kidneys versus contralateral unobstructed specimens were evident as early as 4 hours after UUO and steadily increased at 12, 24, 48, and 96 hours after UUO. Both X-irradiation and reversal of UUO failed to significantly modulate renal cortical osteopontin mRNA expression at all of the above time points. Paralleling the increments in renal cortical osteopontin mRNA levels were significant elevations in the cortical renal interstitial macrophage number, which was significantly diminished by previous X-irradiation but not reversal of UUO. Focal labeling of osteopontin was noted in both tubular and Bowman's capsular epithelium in obstructed kidneys as early as 4 hours after UUO, whereas, in the contralateral unobstructed specimens, there was only faint staining in Bowman's capsule. By 96 hours after UUO, obstructed kidneys exhibited intense, diffuse staining for osteopontin in both tubules and Bowman's capsule. Osteopontin's immunolocalization was not modulated by X-irradiation or reversal of UUO. These data support the contention that osteopontin is involved in the accumulation of macrophages within the peritubular and periglomerular interstitium in the obstructed renal cortex.
Full text
PDF











Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson S., Diamond J. R., Karnovsky M. J., Brenner B. M. Mechanisms underlying transition from acute glomerular injury to late glomerular sclerosis in a rat model of nephrotic syndrome. J Clin Invest. 1988 Nov;82(5):1757–1768. doi: 10.1172/JCI113789. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Butler W. T. The nature and significance of osteopontin. Connect Tissue Res. 1989;23(2-3):123–136. doi: 10.3109/03008208909002412. [DOI] [PubMed] [Google Scholar]
- Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
- Craig A. M., Smith J. H., Denhardt D. T. Osteopontin, a transformation-associated cell adhesion phosphoprotein, is induced by 12-O-tetradecanoylphorbol 13-acetate in mouse epidermis. J Biol Chem. 1989 Jun 5;264(16):9682–9689. [PubMed] [Google Scholar]
- Diamond J. R., van Goor H., Ding G., Engelmyer E. Myofibroblasts in experimental hydronephrosis. Am J Pathol. 1995 Jan;146(1):121–129. [PMC free article] [PubMed] [Google Scholar]
- Ding G., Pesek-Diamond I., Diamond J. R. Cholesterol, macrophages, and gene expression of TGF-beta 1 and fibronectin during nephrosis. Am J Physiol. 1993 Apr;264(4 Pt 2):F577–F584. doi: 10.1152/ajprenal.1993.264.4.F577. [DOI] [PubMed] [Google Scholar]
- Eddy A. A. Protein restriction reduces transforming growth factor-beta and interstitial fibrosis in nephrotic syndrome. Am J Physiol. 1994 Jun;266(6 Pt 2):F884–F893. doi: 10.1152/ajprenal.1994.266.6.F884. [DOI] [PubMed] [Google Scholar]
- Engelmyer E., van Goor H., Edwards D. R., Diamond J. R. Differential mRNA expression of renal cortical tissue inhibitor of metalloproteinase-1, -2, and -3 in experimental hydronephrosis. J Am Soc Nephrol. 1995 Mar;5(9):1675–1683. doi: 10.1681/ASN.V591675. [DOI] [PubMed] [Google Scholar]
- Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
- Giachelli C. M., Bae N., Almeida M., Denhardt D. T., Alpers C. E., Schwartz S. M. Osteopontin is elevated during neointima formation in rat arteries and is a novel component of human atherosclerotic plaques. J Clin Invest. 1993 Oct;92(4):1686–1696. doi: 10.1172/JCI116755. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Giachelli C. M., Pichler R., Lombardi D., Denhardt D. T., Alpers C. E., Schwartz S. M., Johnson R. J. Osteopontin expression in angiotensin II-induced tubulointerstitial nephritis. Kidney Int. 1994 Feb;45(2):515–524. doi: 10.1038/ki.1994.67. [DOI] [PubMed] [Google Scholar]
- Gröne H. J., Weber K., Gröne E., Helmchen U., Osborn M. Coexpression of keratin and vimentin in damaged and regenerating tubular epithelia of the kidney. Am J Pathol. 1987 Oct;129(1):1–8. [PMC free article] [PubMed] [Google Scholar]
- Harris K. P., Schreiner G. F., Klahr S. Effect of leukocyte depletion on the function of the postobstructed kidney in the rat. Kidney Int. 1989 Aug;36(2):210–215. doi: 10.1038/ki.1989.181. [DOI] [PubMed] [Google Scholar]
- Kaneto H., Morrissey J., Klahr S. Increased expression of TGF-beta 1 mRNA in the obstructed kidney of rats with unilateral ureteral ligation. Kidney Int. 1993 Aug;44(2):313–321. doi: 10.1038/ki.1993.246. [DOI] [PubMed] [Google Scholar]
- Kasugai S., Zhang Q., Overall C. M., Wrana J. L., Butler W. T., Sodek J. Differential regulation of the 55 and 44 kDa forms of secreted phosphoprotein 1 (SPP-1, osteopontin) in normal and transformed rat bone cells by osteotropic hormones, growth factors and a tumor promoter. Bone Miner. 1991 Jun;13(3):235–250. doi: 10.1016/0169-6009(91)90071-7. [DOI] [PubMed] [Google Scholar]
- Klahr S. New insights into the consequences and mechanisms of renal impairment in obstructive nephropathy. Am J Kidney Dis. 1991 Dec;18(6):689–699. doi: 10.1016/s0272-6386(12)80611-1. [DOI] [PubMed] [Google Scholar]
- Lopez C. A., Hoyer J. R., Wilson P. D., Waterhouse P., Denhardt D. T. Heterogeneity of osteopontin expression among nephrons in mouse kidneys and enhanced expression in sclerotic glomeruli. Lab Invest. 1993 Sep;69(3):355–363. [PubMed] [Google Scholar]
- Ogata K., Kurki P., Celis J. E., Nakamura R. M., Tan E. M. Monoclonal antibodies to a nuclear protein (PCNA/cyclin) associated with DNA replication. Exp Cell Res. 1987 Feb;168(2):475–486. doi: 10.1016/0014-4827(87)90020-6. [DOI] [PubMed] [Google Scholar]
- Oldberg A., Franzén A., Heinegård D. Cloning and sequence analysis of rat bone sialoprotein (osteopontin) cDNA reveals an Arg-Gly-Asp cell-binding sequence. Proc Natl Acad Sci U S A. 1986 Dec;83(23):8819–8823. doi: 10.1073/pnas.83.23.8819. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pesek-Diamond I., Ding G., Frye J., Diamond J. R. Macrophages mediate adverse effects of cholesterol feeding in experimental nephrosis. Am J Physiol. 1992 Nov;263(5 Pt 2):F776–F783. doi: 10.1152/ajprenal.1992.263.5.F776. [DOI] [PubMed] [Google Scholar]
- Pichler R., Giachelli C. M., Lombardi D., Pippin J., Gordon K., Alpers C. E., Schwartz S. M., Johnson R. J. Tubulointerstitial disease in glomerulonephritis. Potential role of osteopontin (uropontin). Am J Pathol. 1994 May;144(5):915–926. [PMC free article] [PubMed] [Google Scholar]
- Rovin B. H., Harris K. P., Morrison A., Klahr S., Schreiner G. F. Renal cortical release of a specific macrophage chemoattractant in response to ureteral obstruction. Lab Invest. 1990 Aug;63(2):213–220. [PubMed] [Google Scholar]
- Schreiner G. F., Harris K. P., Purkerson M. L., Klahr S. Immunological aspects of acute ureteral obstruction: immune cell infiltrate in the kidney. Kidney Int. 1988 Oct;34(4):487–493. doi: 10.1038/ki.1988.207. [DOI] [PubMed] [Google Scholar]
- Singh R. P., Patarca R., Schwartz J., Singh P., Cantor H. Definition of a specific interaction between the early T lymphocyte activation 1 (Eta-1) protein and murine macrophages in vitro and its effect upon macrophages in vivo. J Exp Med. 1990 Jun 1;171(6):1931–1942. doi: 10.1084/jem.171.6.1931. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Somerman M. J., Fisher L. W., Foster R. A., Sauk J. J. Human bone sialoprotein I and II enhance fibroblast attachment in vitro. Calcif Tissue Int. 1988 Jul;43(1):50–53. doi: 10.1007/BF02555169. [DOI] [PubMed] [Google Scholar]
- Van Goor H., Ding G., Kees-Folts D., Grond J., Schreiner G. F., Diamond J. R. Macrophages and renal disease. Lab Invest. 1994 Oct;71(4):456–464. [PubMed] [Google Scholar]
- Wallenstein S., Zucker C. L., Fleiss J. L. Some statistical methods useful in circulation research. Circ Res. 1980 Jul;47(1):1–9. doi: 10.1161/01.res.47.1.1. [DOI] [PubMed] [Google Scholar]
- Yoon K., Buenaga R., Rodan G. A. Tissue specificity and developmental expression of rat osteopontin. Biochem Biophys Res Commun. 1987 Nov 13;148(3):1129–1136. doi: 10.1016/s0006-291x(87)80250-4. [DOI] [PubMed] [Google Scholar]
- van Goor H., van der Horst M. L., Fidler V., Grond J. Glomerular macrophage modulation affects mesangial expansion in the rat after renal ablation. Lab Invest. 1992 May;66(5):564–571. [PubMed] [Google Scholar]