Skip to main content
The American Journal of Pathology logoLink to The American Journal of Pathology
. 1995 Sep;147(3):654–667.

Immunohistochemical and ultrastructural detection of advanced glycation end products in atherosclerotic lesions of human aorta with a novel specific monoclonal antibody.

S Kume 1, M Takeya 1, T Mori 1, N Araki 1, H Suzuki 1, S Horiuchi 1, T Kodama 1, Y Miyauchi 1, K Takahashi 1
PMCID: PMC1870970  PMID: 7545874

Abstract

To elucidate the deposition of advanced glycation end products (AGEs) in aortic atherosclerosis, aortic walls were obtained from 25 autopsy cases and examined immunohistochemically and immunoelectron microscopically with a monoclonal antibody specific for AGEs, 6D12. Among the autopsy cases, atherosclerotic lesions were found in the aortas of 22 cases and were composed of diffuse intimal thickening, fatty streaks, atherosclerotic plaques, and/or complicated lesions. In these cases, intracellular AGE accumulation was demonstrated in the intimal lesions of aortic atherosclerosis in 12 cases. Compared with the diffuse intimal thickening, intracellular AGE accumulation was marked in the fatty streaks and atherosclerotic plaques. Immunohistochemical double staining with 6D12 and monoclonal antibodies for macrophages or muscle actin or a polyclonal antibody for scavenger receptors demonstrated that the AGE accumulation in macrophages or their related foam cells was marked in the diffuse intimal thickening and fatty streak lesions and that almost all macrophages and macrophage-derived foam cells possessed scavenger receptors. Immunoelectron microscopic observation revealed the localization of 6D12-positive reaction in lysosomal lipid vacuoles or electron-dense granules of the foam cells. These results indicate that AGE accumulation occurs in macrophages, smooth muscle cells, and their related foam cells.

Full text

PDF
654

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Araki N., Higashi T., Mori T., Shibayama R., Kawabe Y., Kodama T., Takahashi K., Shichiri M., Horiuchi S. Macrophage scavenger receptor mediates the endocytic uptake and degradation of advanced glycation end products of the Maillard reaction. Eur J Biochem. 1995 Jun 1;230(2):408–415. doi: 10.1111/j.1432-1033.1995.0408h.x. [DOI] [PubMed] [Google Scholar]
  2. Araki N., Ueno N., Chakrabarti B., Morino Y., Horiuchi S. Immunochemical evidence for the presence of advanced glycation end products in human lens proteins and its positive correlation with aging. J Biol Chem. 1992 May 25;267(15):10211–10214. [PubMed] [Google Scholar]
  3. Brett J., Schmidt A. M., Yan S. D., Zou Y. S., Weidman E., Pinsky D., Nowygrod R., Neeper M., Przysiecki C., Shaw A. Survey of the distribution of a newly characterized receptor for advanced glycation end products in tissues. Am J Pathol. 1993 Dec;143(6):1699–1712. [PMC free article] [PubMed] [Google Scholar]
  4. Chang J. C., Ulrich P. C., Bucala R., Cerami A. Detection of an advanced glycosylation product bound to protein in situ. J Biol Chem. 1985 Jul 5;260(13):7970–7974. [PubMed] [Google Scholar]
  5. Day J. F., Thorpe S. R., Baynes J. W. Nonenzymatically glucosylated albumin. In vitro preparation and isolation from normal human serum. J Biol Chem. 1979 Feb 10;254(3):595–597. [PubMed] [Google Scholar]
  6. Fowler S., Shio H., Haley N. J. Characterization of lipid-laden aortic cells from cholesterol-fed rabbits. IV. Investigation of macrophage-like properties of aortic cell populations. Lab Invest. 1979 Oct;41(4):372–378. [PubMed] [Google Scholar]
  7. Gerrity R. G., Naito H. K. Ultrastructural identification of monocyte-derived foam cells in fatty streak lesions. Artery. 1980;8(3):208–214. [PubMed] [Google Scholar]
  8. Gerrity R. G. The role of the monocyte in atherogenesis: I. Transition of blood-borne monocytes into foam cells in fatty lesions. Am J Pathol. 1981 May;103(2):181–190. [PMC free article] [PubMed] [Google Scholar]
  9. Hayase F., Nagaraj R. H., Miyata S., Njoroge F. G., Monnier V. M. Aging of proteins: immunological detection of a glucose-derived pyrrole formed during maillard reaction in vivo. J Biol Chem. 1989 Mar 5;264(7):3758–3764. [PubMed] [Google Scholar]
  10. Horiuchi S., Araki N., Morino Y. Immunochemical approach to characterize advanced glycation end products of the Maillard reaction. Evidence for the presence of a common structure. J Biol Chem. 1991 Apr 25;266(12):7329–7332. [PubMed] [Google Scholar]
  11. Horiuchi S., Murakami M., Takata K., Morino Y. Scavenger receptor for aldehyde-modified proteins. J Biol Chem. 1986 Apr 15;261(11):4962–4966. [PubMed] [Google Scholar]
  12. Horiuchi S., Takata K., Morino Y. Characterization of a membrane-associated receptor from rat sinusoidal liver cells that binds formaldehyde-treated serum albumin. J Biol Chem. 1985 Jan 10;260(1):475–481. [PubMed] [Google Scholar]
  13. Horiuchi S., Takata K., Morino Y. Purification of a receptor for formaldehyde-treated serum albumin from rat liver. J Biol Chem. 1985 Jan 10;260(1):482–488. [PubMed] [Google Scholar]
  14. Joris I., Zand T., Nunnari J. J., Krolikowski F. J., Majno G. Studies on the pathogenesis of atherosclerosis. I. Adhesion and emigration of mononuclear cells in the aorta of hypercholesterolemic rats. Am J Pathol. 1983 Dec;113(3):341–358. [PMC free article] [PubMed] [Google Scholar]
  15. Kelly P. M., Bliss E., Morton J. A., Burns J., McGee J. O. Monoclonal antibody EBM/11: high cellular specificity for human macrophages. J Clin Pathol. 1988 May;41(5):510–515. doi: 10.1136/jcp.41.5.510. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Makita Z., Vlassara H., Cerami A., Bucala R. Immunochemical detection of advanced glycosylation end products in vivo. J Biol Chem. 1992 Mar 15;267(8):5133–5138. [PubMed] [Google Scholar]
  17. Makita Z., Vlassara H., Rayfield E., Cartwright K., Friedman E., Rodby R., Cerami A., Bucala R. Hemoglobin-AGE: a circulating marker of advanced glycosylation. Science. 1992 Oct 23;258(5082):651–653. doi: 10.1126/science.1411574. [DOI] [PubMed] [Google Scholar]
  18. Mitsuhashi T., Nakayama H., Itoh T., Kuwajima S., Aoki S., Atsumi T., Koike T. Immunochemical detection of advanced glycation end products in renal cortex from STZ-induced diabetic rat. Diabetes. 1993 Jun;42(6):826–832. doi: 10.2337/diab.42.6.826. [DOI] [PubMed] [Google Scholar]
  19. Miyata T., Oda O., Inagi R., Iida Y., Araki N., Yamada N., Horiuchi S., Taniguchi N., Maeda K., Kinoshita T. beta 2-Microglobulin modified with advanced glycation end products is a major component of hemodialysis-associated amyloidosis. J Clin Invest. 1993 Sep;92(3):1243–1252. doi: 10.1172/JCI116696. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Monnier V. M., Kohn R. R., Cerami A. Accelerated age-related browning of human collagen in diabetes mellitus. Proc Natl Acad Sci U S A. 1984 Jan;81(2):583–587. doi: 10.1073/pnas.81.2.583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Monnier V. M., Vishwanath V., Frank K. E., Elmets C. A., Dauchot P., Kohn R. R. Relation between complications of type I diabetes mellitus and collagen-linked fluorescence. N Engl J Med. 1986 Feb 13;314(7):403–408. doi: 10.1056/NEJM198602133140702. [DOI] [PubMed] [Google Scholar]
  22. Mora R., Lupu F., Simionescu N. Prelesional events in atherogenesis. Colocalization of apolipoprotein B, unesterified cholesterol and extracellular phospholipid liposomes in the aorta of hyperlipidemic rabbit. Atherosclerosis. 1987 Oct;67(2-3):143–154. doi: 10.1016/0021-9150(87)90274-7. [DOI] [PubMed] [Google Scholar]
  23. Mori T., Takahashi K., Naito M., Kodama T., Hakamata H., Sakai M., Miyazaki A., Horiuchi S., Ando M. Endocytic pathway of scavenger receptors via trans-Golgi system in bovine alveolar macrophages. Lab Invest. 1994 Sep;71(3):409–416. [PubMed] [Google Scholar]
  24. Naito M., Suzuki H., Mori T., Matsumoto A., Kodama T., Takahashi K. Coexpression of type I and type II human macrophage scavenger receptors in macrophages of various organs and foam cells in atherosclerotic lesions. Am J Pathol. 1992 Sep;141(3):591–599. [PMC free article] [PubMed] [Google Scholar]
  25. Nakayama H., Mitsuhashi T., Kuwajima S., Aoki S., Kuroda Y., Itoh T., Nakagawa S. Immunochemical detection of advanced glycation end products in lens crystallins from streptozocin-induced diabetic rat. Diabetes. 1993 Feb;42(2):345–350. doi: 10.2337/diab.42.2.345. [DOI] [PubMed] [Google Scholar]
  26. Neeper M., Schmidt A. M., Brett J., Yan S. D., Wang F., Pan Y. C., Elliston K., Stern D., Shaw A. Cloning and expression of a cell surface receptor for advanced glycosylation end products of proteins. J Biol Chem. 1992 Jul 25;267(21):14998–15004. [PubMed] [Google Scholar]
  27. Newman I., Wilkinson P. C. Methods for phenotyping polarized and locomotor human lymphocytes. J Immunol Methods. 1992 Feb 14;147(1):43–50. doi: 10.1016/s0022-1759(12)80027-5. [DOI] [PubMed] [Google Scholar]
  28. Rahbar S. An abnormal hemoglobin in red cells of diabetics. Clin Chim Acta. 1968 Oct;22(2):296–298. doi: 10.1016/0009-8981(68)90372-0. [DOI] [PubMed] [Google Scholar]
  29. Ruan Y., Takahashi K., Naito M. Immunohistochemical detection of macrophage-derived foam cells and macrophage colony-stimulating factor in pulmonary atherogenesis of cholesterol-fed rabbits. Pathol Int. 1995 Mar;45(3):185–195. doi: 10.1111/j.1440-1827.1995.tb03441.x. [DOI] [PubMed] [Google Scholar]
  30. Schleicher E., Deufel T., Wieland O. H. Non-enzymatic glycosylation of human serum lipoproteins. Elevated epsilon-lysine glycosylated low density lipoprotein in diabetic patients. FEBS Lett. 1981 Jun 29;129(1):1–4. doi: 10.1016/0014-5793(81)80741-7. [DOI] [PubMed] [Google Scholar]
  31. Schmidt A. M., Vianna M., Gerlach M., Brett J., Ryan J., Kao J., Esposito C., Hegarty H., Hurley W., Clauss M. Isolation and characterization of two binding proteins for advanced glycosylation end products from bovine lung which are present on the endothelial cell surface. J Biol Chem. 1992 Jul 25;267(21):14987–14997. [PubMed] [Google Scholar]
  32. Schmidt A. M., Yan S. D., Brett J., Mora R., Nowygrod R., Stern D. Regulation of human mononuclear phagocyte migration by cell surface-binding proteins for advanced glycation end products. J Clin Invest. 1993 May;91(5):2155–2168. doi: 10.1172/JCI116442. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Schwartz C. J., Sprague E. A., Kelley J. L., Valente A. J., Suenram C. A. Aortic intimal monocyte recruitment in the normo and hypercholesterolemic baboon (Papio cynocephalus). An ultrastructural study: implications in atherogenesis. Virchows Arch A Pathol Anat Histopathol. 1985;405(2):175–191. doi: 10.1007/BF00704370. [DOI] [PubMed] [Google Scholar]
  34. Schwartz C. J., Valente A. J., Sprague E. A., Kelley J. L., Suenram C. A., Graves D. T., Rozek M. M., Edwards E. H., Delgado R. Monocyte-macrophage participation in atherogenesis: inflammatory components of pathogenesis. Semin Thromb Hemost. 1986 Apr;12(2):79–86. doi: 10.1055/s-2007-1003539. [DOI] [PubMed] [Google Scholar]
  35. Sell D. R., Monnier V. M. End-stage renal disease and diabetes catalyze the formation of a pentose-derived crosslink from aging human collagen. J Clin Invest. 1990 Feb;85(2):380–384. doi: 10.1172/JCI114449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Simionescu N., Vasile E., Lupu F., Popescu G., Simionescu M. Prelesional events in atherogenesis. Accumulation of extracellular cholesterol-rich liposomes in the arterial intima and cardiac valves of the hyperlipidemic rabbit. Am J Pathol. 1986 Apr;123(1):109–125. [PMC free article] [PubMed] [Google Scholar]
  37. Skolnik E. Y., Yang Z., Makita Z., Radoff S., Kirstein M., Vlassara H. Human and rat mesangial cell receptors for glucose-modified proteins: potential role in kidney tissue remodelling and diabetic nephropathy. J Exp Med. 1991 Oct 1;174(4):931–939. doi: 10.1084/jem.174.4.931. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Stevens V. J., Rouzer C. A., Monnier V. M., Cerami A. Diabetic cataract formation: potential role of glycosylation of lens crystallins. Proc Natl Acad Sci U S A. 1978 Jun;75(6):2918–2922. doi: 10.1073/pnas.75.6.2918. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Takata K., Horiuchi S., Araki N., Shiga M., Saitoh M., Morino Y. Endocytic uptake of nonenzymatically glycosylated proteins is mediated by a scavenger receptor for aldehyde-modified proteins. J Biol Chem. 1988 Oct 15;263(29):14819–14825. [PubMed] [Google Scholar]
  40. Takata K., Horiuchi S., Araki N., Shiga M., Saitoh M., Morino Y. Scavenger receptor of human monocytic leukemia cell line (THP-1) and murine macrophages for nonenzymatically glycosylated proteins. Biochim Biophys Acta. 1989 Nov 17;986(1):18–26. doi: 10.1016/0005-2736(89)90267-8. [DOI] [PubMed] [Google Scholar]
  41. Takeya M., Tsuchiya T., Shimokawa Y., Takahashi K. A new monoclonal antibody, PM-2K, specifically recognizes tissue macrophages but not blood monocytes. J Pathol. 1991 Apr;163(4):315–321. doi: 10.1002/path.1711630408. [DOI] [PubMed] [Google Scholar]
  42. Takeya M., Yoshimura T., Leonard E. J., Takahashi K. Detection of monocyte chemoattractant protein-1 in human atherosclerotic lesions by an anti-monocyte chemoattractant protein-1 monoclonal antibody. Hum Pathol. 1993 May;24(5):534–539. doi: 10.1016/0046-8177(93)90166-e. [DOI] [PubMed] [Google Scholar]
  43. Tsukada T., Tippens D., Gordon D., Ross R., Gown A. M. HHF35, a muscle-actin-specific monoclonal antibody. I. Immunocytochemical and biochemical characterization. Am J Pathol. 1987 Jan;126(1):51–60. [PMC free article] [PubMed] [Google Scholar]
  44. Vlassara H., Brownlee M., Cerami A. High-affinity-receptor-mediated uptake and degradation of glucose-modified proteins: a potential mechanism for the removal of senescent macromolecules. Proc Natl Acad Sci U S A. 1985 Sep;82(17):5588–5592. doi: 10.1073/pnas.82.17.5588. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Vlassara H., Brownlee M., Cerami A. Nonenzymatic glycosylation of peripheral nerve protein in diabetes mellitus. Proc Natl Acad Sci U S A. 1981 Aug;78(8):5190–5192. doi: 10.1073/pnas.78.8.5190. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Yang Z., Makita Z., Horii Y., Brunelle S., Cerami A., Sehajpal P., Suthanthiran M., Vlassara H. Two novel rat liver membrane proteins that bind advanced glycosylation endproducts: relationship to macrophage receptor for glucose-modified proteins. J Exp Med. 1991 Sep 1;174(3):515–524. doi: 10.1084/jem.174.3.515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. el Khoury J., Thomas C. A., Loike J. D., Hickman S. E., Cao L., Silverstein S. C. Macrophages adhere to glucose-modified basement membrane collagen IV via their scavenger receptors. J Biol Chem. 1994 Apr 8;269(14):10197–10200. [PubMed] [Google Scholar]

Articles from The American Journal of Pathology are provided here courtesy of American Society for Investigative Pathology

RESOURCES