Abstract
Low density lipoprotein (LDL), if it becomes oxidized, develops several unique properties including the capacity to provoke endothelial cytotoxicity via metal-catalyzed free radical-mediated mechanisms. As were previously have shown that iron-catalyzed oxidant injury to endothelial cells can be attenuated by the addition of exogenous iron chelators such as the lazaroids and deferoxamine, we have examined whether the endogenous iron chelator, ferritin, might provide protection from oxidized LDL. LDL oxidized by iron-containing hemin and H2O2 is toxic to endothelial cells in a time- and dose-dependent fashion. Endothelial cell ferritin content is increased by pretreatment of cells with iron compounds or by the direct addition of exogenous apoferritin; ferritin-loaded cells are markedly resistant to the toxicity caused by oxidized LDL. Iron inactivation by ferritin depends on its ferroxidase activity. When a recombinant human ferritin heavy chain mutant, 222, which is devoid of ferroxidase activity, is added to endothelial cells, unlike the excellent protection afforded by the wild-type recombinant heavy chain, endothelial cells are not protected from oxidized LDL. To assess the in vivo relevance of our observation, we examined human coronary arteries of cardiac explants taken from patients with end-stage atherosclerosis. Large amounts of immunoreactive ferritin are focally detected in atherosclerotic lesions, specifically in the myofibroblasts, macrophages, and endothelium without a notable increase in Prussian blue-detectable iron. These findings suggest that ferritin may modulate vascular cell injury in vivo.
Full text
PDF







Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bakker G. R., Boyer R. F. Iron incorporation into apoferritin. The role of apoferritin as a ferroxidase. J Biol Chem. 1986 Oct 5;261(28):13182–13185. [PubMed] [Google Scholar]
- Balla G., Jacob H. S., Balla J., Rosenberg M., Nath K., Apple F., Eaton J. W., Vercellotti G. M. Ferritin: a cytoprotective antioxidant strategem of endothelium. J Biol Chem. 1992 Sep 5;267(25):18148–18153. [PubMed] [Google Scholar]
- Balla G., Jacob H. S., Eaton J. W., Belcher J. D., Vercellotti G. M. Hemin: a possible physiological mediator of low density lipoprotein oxidation and endothelial injury. Arterioscler Thromb. 1991 Nov-Dec;11(6):1700–1711. doi: 10.1161/01.atv.11.6.1700. [DOI] [PubMed] [Google Scholar]
- Balla G., Vercellotti G. M., Eaton J. W., Jacob H. S. Iron loading of endothelial cells augments oxidant damage. J Lab Clin Med. 1990 Oct;116(4):546–554. [PubMed] [Google Scholar]
- Balla G., Vercellotti G. M., Muller-Eberhard U., Eaton J., Jacob H. S. Exposure of endothelial cells to free heme potentiates damage mediated by granulocytes and toxic oxygen species. Lab Invest. 1991 May;64(5):648–655. [PubMed] [Google Scholar]
- Belcher J. D., Balla J., Balla G., Jacobs D. R., Jr, Gross M., Jacob H. S., Vercellotti G. M. Vitamin E, LDL, and endothelium. Brief oral vitamin supplementation prevents oxidized LDL-mediated vascular injury in vitro. Arterioscler Thromb. 1993 Dec;13(12):1779–1789. doi: 10.1161/01.atv.13.12.1779. [DOI] [PubMed] [Google Scholar]
- Broxmeyer H. E., Cooper S., Levi S., Arosio P. Mutated recombinant human heavy-chain ferritins and myelosuppression in vitro and in vivo: a link between ferritin ferroxidase activity and biological function. Proc Natl Acad Sci U S A. 1991 Feb 1;88(3):770–774. doi: 10.1073/pnas.88.3.770. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cozzi A., Santambrogio P., Levi S., Arosio P. Iron detoxifying activity of ferritin. Effects of H and L human apoferritins on lipid peroxidation in vitro. FEBS Lett. 1990 Dec 17;277(1-2):119–122. doi: 10.1016/0014-5793(90)80823-2. [DOI] [PubMed] [Google Scholar]
- Gannon D. E., Varani J., Phan S. H., Ward J. H., Kaplan J., Till G. O., Simon R. H., Ryan U. S., Ward P. A. Source of iron in neutrophil-mediated killing of endothelial cells. Lab Invest. 1987 Jul;57(1):37–44. [PubMed] [Google Scholar]
- Gutteridge J. M., Rowley D. A., Halliwell B. Superoxide-dependent formation of hydroxyl radicals in the presence of iron salts. Detection of 'free' iron in biological systems by using bleomycin-dependent degradation of DNA. Biochem J. 1981 Oct 1;199(1):263–265. doi: 10.1042/bj1990263. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Görög P., Kakkar V. V. Increased uptake of monocyte-treated low density lipoproteins by aortic endothelium in vivo. Atherosclerosis. 1987 May;65(1-2):99–107. doi: 10.1016/0021-9150(87)90011-6. [DOI] [PubMed] [Google Scholar]
- Levi S., Luzzago A., Cesareni G., Cozzi A., Franceschinelli F., Albertini A., Arosio P. Mechanism of ferritin iron uptake: activity of the H-chain and deletion mapping of the ferro-oxidase site. A study of iron uptake and ferro-oxidase activity of human liver, recombinant H-chain ferritins, and of two H-chain deletion mutants. J Biol Chem. 1988 Dec 5;263(34):18086–18092. [PubMed] [Google Scholar]
- Magnusson M. K., Sigfusson N., Sigvaldason H., Johannesson G. M., Magnusson S., Thorgeirsson G. Low iron-binding capacity as a risk factor for myocardial infarction. Circulation. 1994 Jan;89(1):102–108. doi: 10.1161/01.cir.89.1.102. [DOI] [PubMed] [Google Scholar]
- Morel D. W., DiCorleto P. E., Chisolm G. M. Endothelial and smooth muscle cells alter low density lipoprotein in vitro by free radical oxidation. Arteriosclerosis. 1984 Jul-Aug;4(4):357–364. doi: 10.1161/01.atv.4.4.357. [DOI] [PubMed] [Google Scholar]
- Peterson G. L. A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem. 1977 Dec;83(2):346–356. doi: 10.1016/0003-2697(77)90043-4. [DOI] [PubMed] [Google Scholar]
- Ponka P., Borová J., Neuwirt J., Fuchs O. Mobilization of iron from reticulocytes. Identification of pyridoxal isonicotinoyl hydrazone as a new iron chelating agent. FEBS Lett. 1979 Jan 15;97(2):317–321. doi: 10.1016/0014-5793(79)80111-8. [DOI] [PubMed] [Google Scholar]
- Ponka P., Schulman H. M., Wilczynska A. Ferric pyridoxal isonicotinoyl hydrazone can provide iron for heme synthesis in reticulocytes. Biochim Biophys Acta. 1982 Oct 8;718(2):151–156. doi: 10.1016/0304-4165(82)90213-6. [DOI] [PubMed] [Google Scholar]
- Reif D. W. Ferritin as a source of iron for oxidative damage. Free Radic Biol Med. 1992;12(5):417–427. doi: 10.1016/0891-5849(92)90091-t. [DOI] [PubMed] [Google Scholar]
- Reif D. W., Simmons R. D. Nitric oxide mediates iron release from ferritin. Arch Biochem Biophys. 1990 Dec;283(2):537–541. doi: 10.1016/0003-9861(90)90680-w. [DOI] [PubMed] [Google Scholar]
- Rimm E. B., Stampfer M. J., Ascherio A., Giovannucci E., Colditz G. A., Willett W. C. Vitamin E consumption and the risk of coronary heart disease in men. N Engl J Med. 1993 May 20;328(20):1450–1456. doi: 10.1056/NEJM199305203282004. [DOI] [PubMed] [Google Scholar]
- Rogers J. T., Bridges K. R., Durmowicz G. P., Glass J., Auron P. E., Munro H. N. Translational control during the acute phase response. Ferritin synthesis in response to interleukin-1. J Biol Chem. 1990 Aug 25;265(24):14572–14578. [PubMed] [Google Scholar]
- Salonen J. T., Nyyssönen K., Korpela H., Tuomilehto J., Seppänen R., Salonen R. High stored iron levels are associated with excess risk of myocardial infarction in eastern Finnish men. Circulation. 1992 Sep;86(3):803–811. doi: 10.1161/01.cir.86.3.803. [DOI] [PubMed] [Google Scholar]
- Sempos C. T., Looker A. C., Gillum R. F., Makuc D. M. Body iron stores and the risk of coronary heart disease. N Engl J Med. 1994 Apr 21;330(16):1119–1124. doi: 10.1056/NEJM199404213301604. [DOI] [PubMed] [Google Scholar]
- Smith C., Mitchinson M. J., Aruoma O. I., Halliwell B. Stimulation of lipid peroxidation and hydroxyl-radical generation by the contents of human atherosclerotic lesions. Biochem J. 1992 Sep 15;286(Pt 3):901–905. doi: 10.1042/bj2860901. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stampfer M. J., Hennekens C. H., Manson J. E., Colditz G. A., Rosner B., Willett W. C. Vitamin E consumption and the risk of coronary disease in women. N Engl J Med. 1993 May 20;328(20):1444–1449. doi: 10.1056/NEJM199305203282003. [DOI] [PubMed] [Google Scholar]
- Thomas C. E., Morehouse L. A., Aust S. D. Ferritin and superoxide-dependent lipid peroxidation. J Biol Chem. 1985 Mar 25;260(6):3275–3280. [PubMed] [Google Scholar]
- Vercellotti G. M., Wickham N. W., Gustafson K. S., Yin H. Q., Hebert M., Jacob H. S. Thrombin-treated endothelium primes neutrophil functions: inhibition by platelet-activating factor receptor antagonists. J Leukoc Biol. 1989 Jun;45(6):483–490. doi: 10.1002/jlb.45.6.483. [DOI] [PubMed] [Google Scholar]
- Witztum J. L., Steinberg D. Role of oxidized low density lipoprotein in atherogenesis. J Clin Invest. 1991 Dec;88(6):1785–1792. doi: 10.1172/JCI115499. [DOI] [PMC free article] [PubMed] [Google Scholar]


