Abstract
The microbial modification of several trichothecene mycotoxins by trichothecene-producing strains of Fusarium nivale and F. solani was studied. These results were compared with the corresponding chemical modifications. The growing mycelia of Fusarium spp. did not convert 4β-acetoxy-3α,7α,15-trihydroxy-12,13-epoxytrichothec-9-en-8-one (fusarenon) into 3α,4β,7α,15-tetrahydroxy-12,13-epoxy-trichothec-9-en-8-one (nivalenol), whereas 3α,4β,7α,15-tetraacetoxy-12,13-epoxytrichothec-9-en-8-one (tetraacetylnivalenol) was deacetylated to yield 3α-hydroxy-4β,7α,15-triacetoxy-12,13-epoxytrichothec-9-en-8-one (4,7,15-triacetylnivalenol), which was resistant to further deacetylation. T-2 toxin was transformed into HT-2 toxin, and 8α-(3-methylbutyryloxy)-3α,4β,-15-triacetoxy-12,13-epoxytrichothec-9-en-8-one (T-2 acetate) was transformed into HT-2 toxin via T-2 toxin. Chemical modification with ammonium hydroxide converted tetraacetylnivalenol into fusarenon via 4,7,15-triacetylnivalenol. 3α,-7α,15-Triacetoxy-12, 13-epoxytrichothec-9-en-8-one (triacetyldeoxynivalenol) gave deacetylation products lacking the C-7 or C-15 acetyl group in addition to 7α,15 - diacetoxy - 3α - hydroxy - 12,13 - epoxytrichothec - 9 - en - 8 - one (7,15 - diacetyldeoxynivalenol). These results demonstrate the regio-selectivity in microbial modification of trichothecenes. Based on the results and available knowledge concerning the transformation of trichothecenes, mechanisms for biological modifications of these mycotoxins are postulated.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barbacid M., Vazquez D. Binding of (acetyl-14C)trichodermin to the peptidyl transferase centre of eukaryotic ribosomes. Eur J Biochem. 1974 May 15;44(2):437–444. doi: 10.1111/j.1432-1033.1974.tb03501.x. [DOI] [PubMed] [Google Scholar]
- Cundliffe E., Cannon M., Davies J. Mechanism of inhibition of eukaryotic protein synthesis by trichothecene fungal toxins. Proc Natl Acad Sci U S A. 1974 Jan;71(1):30–34. doi: 10.1073/pnas.71.1.30. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ellison R. A., Kotsonis F. N. In vitro metabolism of T-2 toxin. Appl Microbiol. 1974 Feb;27(2):423–424. doi: 10.1128/am.27.2.423-424.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fujimoto Y., Morita Y., Tatsuno T. Recherches toxicologiques sur les substances toxiques de fusarium nivale: étude chimique des toxins principales, nivalenol, fusarenon-X et nivalenol-4,15-di-O-acétate. Chem Pharm Bull (Tokyo) 1972 Jun;20(6):1194–1203. doi: 10.1248/cpb.20.1194. [DOI] [PubMed] [Google Scholar]
- Grove J. F., Mortimer P. H. The cytotoxicity of some transformation products of diacetoxyscirpenol. Biochem Pharmacol. 1969 Jun;18(6):1473–1478. doi: 10.1016/0006-2952(69)90261-5. [DOI] [PubMed] [Google Scholar]
- Grove J. F. Phytotoxic compounds produced by Fusarium equiseti. V. Transformation products of 4-beta,15-diacetoxy-3-alpha,7-alpha-dihydroxy-12,13-epoxytrichothec-9-en-8-one and the structures of nivalenol and fusarenone. J Chem Soc Perkin 1. 1970;2:375–378. doi: 10.1039/j39700000375. [DOI] [PubMed] [Google Scholar]
- HORVATH I., VARGA J. M. Enzymic inactivation of trichothecin and crotocin. Nature. 1961 Oct 7;192:88–88. doi: 10.1038/192088a0. [DOI] [PubMed] [Google Scholar]
- Ueno Y., Ishii K., Sakai K., Kanaeda S., Tsunoda H. Toxicological approaches to the metabolites of Fusaria. IV. Microbial survey on "bean-hulls poisoning of horses" with the isolation of toxic trichothecenes, neosolaniol and T-2 toxin of Fusarium solani M-1-1. Jpn J Exp Med. 1972 Jun;42(3):187–203. [PubMed] [Google Scholar]
- Ueno Y., Ishikawa Y., Saito-Amakai K., Tsunoda H. Environmental factors influencing the production of fusarenon-X, a cytotoxic mycotoxin of Fusarium nivale Fn 2B. Chem Pharm Bull (Tokyo) 1970 Feb;18(2):304–312. doi: 10.1248/cpb.18.304. [DOI] [PubMed] [Google Scholar]
- Ueno Y., Nakajima M., Sakai K., Ishii K., Sato N. Comparative toxicology of trichothec mycotoxins: inhibition of protein synthesis in animal cells. J Biochem. 1973 Aug;74(2):285–296. [PubMed] [Google Scholar]
- Ueno Y., Ueno I., Amakai K., Ishikawa Y., Tsunoda H. Toxicological approaches to the metabolites of Fusaria. II. Isolation of fusarenon-X from the culture filtrate of Fusarium nivale Fn 2B. Jpn J Exp Med. 1971 Dec;41(6):507–519. [PubMed] [Google Scholar]
- Wei C. M., Hansen B. S., Vaughan M. H., Jr, McLaughlin C. S. Mechanism of action of the mycotoxin trichodermin, a 12,13-epoxytrichothecene. Proc Natl Acad Sci U S A. 1974 Mar;71(3):713–717. doi: 10.1073/pnas.71.3.713. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wei C. M., McLaughlin C. S. Structure-function relationship in the 12,13-epoxytrichothecenes. Novel inhibitors of protein synthesis. Biochem Biophys Res Commun. 1974 Apr 8;57(3):838–844. doi: 10.1016/0006-291x(74)90622-6. [DOI] [PubMed] [Google Scholar]
- Yoshizawa T., Morooka N. Biological modification of trichothecene mycotoxins: acetylation and deacetylation of deoxynivalenols by Fusarium spp. Appl Microbiol. 1975 Jan;29(1):54–58. doi: 10.1128/am.29.1.54-58.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]