Skip to main content
Applied Microbiology logoLink to Applied Microbiology
. 1975 Sep;30(3):354–361. doi: 10.1128/am.30.3.354-361.1975

Metalloprotease from Bacillus thuringiensis

Eugenia Li 1, Allan A Yousten 1
PMCID: PMC187189  PMID: 241290

Abstract

Bacillus thuringiensis var. kurstaki was shown to produce an extracellular, metal chelator-sensitive protease during the early stages of sporulation. Protease production in nutrient broth was dependent upon supplementation with Mn2+ or Ca2+. The addition of Ca2+ was required for enzyme stabilization. Protease production occurred in nutrient broth supplemented with 7 × 10-3 M Ca2+, 5 × 10-4 M Mn2+, and 10-3 M Mg2+. The protease had optimum activity in the pH range 6.5 to 7.5. It was inhibited by chelating agents but not by a serine protease inhibitor. The culture supernatant and the partially purified protease lacked esterase activity. Partial purification of the enzyme (92.3 ×) by (NH4)2SO4 fractionation and starch adsorption yielded an enzyme whose molecular weight was estimated to be 37,500 by acrylamide gel-sodium dodecyl sulfate electrophoresis or 40,800 by sucrose density gradient centrifugation. In the presence of Ca2+, the partially purified enzyme retained 78% of its activity after heating at 70 C for 10 min but only 8% of its activity after heating at 80 C for 10 min.

Full text

PDF
354

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BERNLOHR R. W. POSTLOGARITHMIC PHASE METABOLISM OF SPORULATING MICROORGANISMS. I. PROTEASE OF BACILLUS LICHENIFORMIS. J Biol Chem. 1964 Feb;239:538–543. [PubMed] [Google Scholar]
  2. Boyer H. W., Carlton B. C. Production of two proteolytic enzymes by a transformable strain of Bacillus subtilis. Arch Biochem Biophys. 1968 Nov;128(2):442–455. doi: 10.1016/0003-9861(68)90050-7. [DOI] [PubMed] [Google Scholar]
  3. Feder J., Keay L., Garrett L. R., Cirulis N., Moseley M. H., Wildi B. S. Bacillus cereus neutral protease. Biochim Biophys Acta. 1971 Oct;251(1):74–78. doi: 10.1016/0005-2795(71)90061-4. [DOI] [PubMed] [Google Scholar]
  4. Fortnagel P., Freese E. Analysis of sporulation mutants. II. Mutants blocked in the citric acid cycle. J Bacteriol. 1968 Apr;95(4):1431–1438. doi: 10.1128/jb.95.4.1431-1438.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Griffin P. J., Fogarty W. M. Physiochemical properties of the native, zinc- and manganese-prepared metalloprotease of Bacillus polymyxa. Appl Microbiol. 1973 Aug;26(2):191–195. doi: 10.1128/am.26.2.191-195.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Keay L., Moser P. W., Wildi B. S. Proteases of the genus Bacillus. II. Alkaline proteases. Biotechnol Bioeng. 1970 Mar;12(2):213–249. doi: 10.1002/bit.260120206. [DOI] [PubMed] [Google Scholar]
  7. Keay L., Wildi B. S. Proteases of the genus Bacillus. I. Neutral proteases. Biotechnol Bioeng. 1970 Mar;12(2):179–212. doi: 10.1002/bit.260120205. [DOI] [PubMed] [Google Scholar]
  8. Kingan S. L., Ensign J. C. Isolation and characterization of three autolytic enzymes associated with sporulation of Bacillus thuringiensis var. thuringiensis. J Bacteriol. 1968 Sep;96(3):629–638. doi: 10.1128/jb.96.3.629-638.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  10. MARTIN R. G., AMES B. N. A method for determining the sedimentation behavior of enzymes: application to protein mixtures. J Biol Chem. 1961 May;236:1372–1379. [PubMed] [Google Scholar]
  11. Morihara K. Comparative specificity of microbial proteinases. Adv Enzymol Relat Areas Mol Biol. 1974;41(0):179–243. doi: 10.1002/9780470122860.ch5. [DOI] [PubMed] [Google Scholar]
  12. NAKATA H. M., HALVORSON H. O. Biochemical changes occurring during growth and sporulation of Bacillus cereus. J Bacteriol. 1960 Dec;80:801–810. doi: 10.1128/jb.80.6.801-810.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Prestidge L., Gage V., Spizizen J. Protease activities during the course of sporulation on Bacillus subtilis. J Bacteriol. 1971 Sep;107(3):815–823. doi: 10.1128/jb.107.3.815-823.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Rogoff M. H., Yousten A. A. Bacillus thuringiensis: microbiological considerations. Annu Rev Microbiol. 1969;23:357–386. doi: 10.1146/annurev.mi.23.100169.002041. [DOI] [PubMed] [Google Scholar]
  15. Schaeffer P. Sporulation and the production of antibiotics, exoenzymes, and exotonins. Bacteriol Rev. 1969 Mar;33(1):48–71. doi: 10.1128/br.33.1.48-71.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Shapiro A. L., Viñuela E., Maizel J. V., Jr Molecular weight estimation of polypeptide chains by electrophoresis in SDS-polyacrylamide gels. Biochem Biophys Res Commun. 1967 Sep 7;28(5):815–820. doi: 10.1016/0006-291x(67)90391-9. [DOI] [PubMed] [Google Scholar]
  17. Yousten A. A., Rogoff M. H. Metabolism of Bacillus thuringiensis in relation to spore and crystal formation. J Bacteriol. 1969 Dec;100(3):1229–1236. doi: 10.1128/jb.100.3.1229-1236.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES