Skip to main content
Applied Microbiology logoLink to Applied Microbiology
. 1975 Sep;30(3):439–444. doi: 10.1128/am.30.3.439-444.1975

Degradation of 3-Hydroxybenzoate by Bacteria of the Genus Bacillus

Ronald L Crawford 1
PMCID: PMC187200  PMID: 810087

Abstract

The pathway whereby certain bacterial strains of the genus Bacillus degrade m-hydroxybenzoate is delineated. Of 12 strains examined, nine were tentatively classified as representatives of the species Bacillus brevis, two of Bacillus sphaericus and one of Bacillus megaterium. All strains degraded m-hydroxybenzoate via the same pathway. m-Hydroxybenzoate was hydroxylated to 2,5-dihydroxybenzoate (gentisate), which was oxidized by a gentisate 1,2-dioxygenase yielding maleylpyruvate. Maleylpyruvate was hydrolyzed without prior cis, cis to cis, trans isomerization yielding pyruvate and maleic acid. Numerous soils were examined by plate-count procedures and found to contain 104 to 106 aerobic sporeformers able to grow on m-hydroxybenzoate per g of dry soil.

Full text

PDF
439

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bouknight R. R., Sadoff H. L. Tryptophan catabolism in Bacillus megaterium. J Bacteriol. 1975 Jan;121(1):70–76. doi: 10.1128/jb.121.1.70-76.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Buswell J. A. The meta-cleavage of catechol by a thermophilic Bacillus species. Biochem Biophys Res Commun. 1974 Oct 8;60(3):934–941. doi: 10.1016/0006-291x(74)90404-5. [DOI] [PubMed] [Google Scholar]
  3. Collinsworth W. L., Chapman P. J., Dagley S. Stereospecific enzymes in the degradation of aromatic compounds by pseudomonas putida. J Bacteriol. 1973 Feb;113(2):922–931. doi: 10.1128/jb.113.2.922-931.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Crawford R. L., Hutton S. W., Chapman P. J. Purification and properties of gentisate 1,2-dioxygenase from Moraxella osloensis. J Bacteriol. 1975 Mar;121(3):794–799. doi: 10.1128/jb.121.3.794-799.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Crawford R. L. Novel pathway for degradation of protocatechuic acid in Bacillus species. J Bacteriol. 1975 Feb;121(2):531–536. doi: 10.1128/jb.121.2.531-536.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. ENSIGN J. C., RITTENBERG S. C. THE PATHWAY OF NICOTINIC ACID OXIDATION BY A BACILLUS SPECIES. J Biol Chem. 1964 Jul;239:2285–2291. [PubMed] [Google Scholar]
  7. Hegeman G. D., Rosenberg E. Y., Kenyon G. L. Mandelic acid racemase from Pseudomonas putida. Purification and properties of the enzyme. Biochemistry. 1970 Oct 13;9(21):4029–4036. doi: 10.1021/bi00823a001. [DOI] [PubMed] [Google Scholar]
  8. Hirschberg R., Ensign J. C. Oxidation of nicotinic acid by a Bacillus species: purification and properties of nicotinic acid and 6-hydroxynicotinic acid hydroxylases. J Bacteriol. 1971 Nov;108(2):751–756. doi: 10.1128/jb.108.2.751-756.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hirschberg R., Ensign J. C. Oxidation of nicotinic acid by a Bacillus species: regulation of nicotinic acid and 6-hydroxynicotinic acid hydroxylases. J Bacteriol. 1972 Oct;112(1):392–397. doi: 10.1128/jb.112.1.392-397.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hirschberg R., Ensign J. C. Oxidation of nicotinic acid by a Bacillus species: source of oxygen atoms for the hydroxylation of nicotinic acid and 6-hydroxynicotinic acid. J Bacteriol. 1971 Nov;108(2):757–759. doi: 10.1128/jb.108.2.757-759.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hopper D. J., Chapman P. J., Dagley S. Enzymic formation of D-malate. Biochem J. 1968 Dec;110(4):798–800. doi: 10.1042/bj1100798. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hopper D. J., Chapman P. J. Gentisic acid and its 3- and 4-methyl-substituted homologoues as intermediates in the bacterial degradation of m-cresol, 3,5-xylenol and 2,5-xylenol. Biochem J. 1971 Mar;122(1):19–28. doi: 10.1042/bj1220019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. LACK L. The enzymic oxidation of gentisic acid. Biochim Biophys Acta. 1959 Jul;34:117–123. doi: 10.1016/0006-3002(59)90239-2. [DOI] [PubMed] [Google Scholar]
  14. Leung P. T., Chapman P. J., Dagley S. Purification and properties of 4-hydroxy-2-ketopimelate aldolase from Acinetobacter. J Bacteriol. 1974 Oct;120(1):168–172. doi: 10.1128/jb.120.1.168-172.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Prasad C., Srinivasan V. R. Tryptophan catabolism during sporulation in Bacillus cereus. Biochem J. 1970 Sep;119(2):343–349. doi: 10.1042/bj1190343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Scher W., Jakoby W. B. Maleate isomerase. J Biol Chem. 1969 Apr 10;244(7):1878–1882. [PubMed] [Google Scholar]
  17. Spokes J. R., Walker N. Chlorophenol and chlorobenzoic acid co-metabolism by different genera of soil bacteria. Arch Mikrobiol. 1974 Mar 4;96(2):125–134. doi: 10.1007/BF00590169. [DOI] [PubMed] [Google Scholar]
  18. Wallnöfer P., Engelhardt G. [The degradation of phenylamides by Bacillus sphaericus]. Arch Mikrobiol. 1971;80(4):315–323. [PubMed] [Google Scholar]
  19. Willetts A. J., Cain R. B. Microbial metabolism of alkylbenzene sulphonates. Bacterial metabolism of undecylbenzene-p-sulphonate and dodecylbenzene-p-sulphonate. Biochem J. 1972 Sep;129(2):389–402. doi: 10.1042/bj1290389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Willetts A. J. Microbial metabolism of alkylbenzene sulphonates. The oxidation of key aromatic compounds by a Bacillus. Antonie Van Leeuwenhoek. 1974;40(4):547–559. doi: 10.1007/BF00403819. [DOI] [PubMed] [Google Scholar]

Articles from Applied Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES