Skip to main content
Applied Microbiology logoLink to Applied Microbiology
. 1975 Sep;30(3):489–492. doi: 10.1128/am.30.3.489-492.1975

γ-Aminobutyric Acid Pathway and Modified Tricarboxylic Acid Cycle Activity During Growth and Sporulation of Bacillus thuringiensis

John N Aronson 1, David P Borris 1, Jeffrey F Doerner 1, Evelyn Akers 1
PMCID: PMC187211  PMID: 1180554

Abstract

Enzymatic analyses of Bacillus thuringiensis extracts suggested that a modified Krebs tricarboxylic acid cycle (without α-ketoglutarate dehydrogenase) can operate during sporulation in conjunction with the glyoxylic acid cycle and the γ-aminobutyric acid pathway.

Full text

PDF
489

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akers E., Aronson J. N. Detection on polyacrylamide gels of L-glutamic acid decarboxylase activities from Bacillus thuringiensis. Anal Biochem. 1971 Feb;39(2):535–538. doi: 10.1016/0003-2697(71)90446-5. [DOI] [PubMed] [Google Scholar]
  2. Aronson J. N., Wermus G. R. Effects of m-Tyrosine on Growth and Sporulation of Bacillus Species. J Bacteriol. 1965 Jul;90(1):38–46. doi: 10.1128/jb.90.1.38-46.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. BECKER E. L. Inhibition of complement activity by di-isopropyl fluorophosphate. Nature. 1955 Dec 3;176(4492):1073–1073. doi: 10.1038/1761073a0. [DOI] [PubMed] [Google Scholar]
  4. Bernlohr R. W. Changes in amino acid permeation during sporulation. J Bacteriol. 1967 Mar;93(3):1031–1044. doi: 10.1128/jb.93.3.1031-1044.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Blair A. H., Barker H. A. Assay and purification of (+)-citramalate hydro-lyase components from Clostridium tetanomorphum. J Biol Chem. 1966 Jan 25;241(2):400–408. [PubMed] [Google Scholar]
  6. Bruce P., Sims K., Pitts F. N., Jr Synthesis and purification of succinic semialdehyde. Anal Biochem. 1971 May;41(1):271–273. doi: 10.1016/0003-2697(71)90211-9. [DOI] [PubMed] [Google Scholar]
  7. Bulla L. A., Jr, St Julian G., Rhodes R. A. Physiology of sporeforming bacteria associated with insects. 3. Radiorespirometry of pyruvate, acetate, succinate, and glutamate oxidation. Can J Microbiol. 1971 Aug;17(8):1073–1079. doi: 10.1139/m71-170. [DOI] [PubMed] [Google Scholar]
  8. Buono F., Testa R., Lundgren D. G. Physiology of growth and sporulation in Bacillus cereus. I. Effect of glutamic and other amino acids. J Bacteriol. 1966 Jun;91(6):2291–2299. doi: 10.1128/jb.91.6.2291-2299.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. CAMMARATA P. S., COHEN P. P. Spectrophotometric measurement of transamination reactions. J Biol Chem. 1951 Nov;193(1):45–52. [PubMed] [Google Scholar]
  10. Carls R. A., Hanson R. S. Isolation and characterization of tricarboxylic acid cycle mutants of Bacillus subtilis. J Bacteriol. 1971 Jun;106(3):848–855. doi: 10.1128/jb.106.3.848-855.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Foerster C. W., Foerster H. F. Glutamic acid decarboxylase in spores of Bacillus megaterium and its possible involvement in spore germination. J Bacteriol. 1973 Jun;114(3):1090–1098. doi: 10.1128/jb.114.3.1090-1098.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kersters K. Rapid screening assays for soluble and particulate bacterial dehydrogenases. Antonie Van Leeuwenhoek. 1967;33(1):63–72. doi: 10.1007/BF02045535. [DOI] [PubMed] [Google Scholar]
  13. LOWE I. P., ROBINS E., EYERMAN G. S. The fluorometric measurement of glutamic decarboxylase and its distribution in brain. J Neurochem. 1958 Oct;3(1):8–18. doi: 10.1111/j.1471-4159.1958.tb12604.x. [DOI] [PubMed] [Google Scholar]
  14. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  15. Megraw R. E., Beers R. J. Glyoxylate metabolism in growth and sporulation of Bacillus cereus. J Bacteriol. 1964 May;87(5):1087–1093. doi: 10.1128/jb.87.5.1087-1093.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Nickerson K. W., De Pinto J., Bulla L. A., Jr Sporulation of Bacillus thuringiensis without concurrent derepression of the tricarboxylic acid cycle. J Bacteriol. 1974 Jan;117(1):321–323. doi: 10.1128/jb.117.1.321-323.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ohné M. Regulation of the dicarboxylic acid part of the citric acid cycle in Bacillus subtilis. J Bacteriol. 1975 Apr;122(1):224–234. doi: 10.1128/jb.122.1.224-234.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. RACKER E. Spectrophotometric measurements of the enzymatic formation of fumaric and cis-aconitic acids. Biochim Biophys Acta. 1950 Jan;4(1-3):211–214. doi: 10.1016/0006-3002(50)90026-6. [DOI] [PubMed] [Google Scholar]
  19. Rosen N. L., Bishop L., Burnett J. B., Bishop M., Colman R. F. Methionyl residue critical for activity and regulation of bovine liver glutamate dehydrogenase. J Biol Chem. 1973 Nov 10;248(21):7359–7369. [PubMed] [Google Scholar]
  20. Rutberg B., Hoch J. A. Citric acid cycle: gene-enzyme relationships in Bacillus subtilis. J Bacteriol. 1970 Nov;104(2):826–833. doi: 10.1128/jb.104.2.826-833.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Singh R. M. Role of tricarboxylic acid cycle in bacterial sporulation. Biochem Biophys Res Commun. 1970 May 22;39(4):651–654. doi: 10.1016/0006-291x(70)90254-8. [DOI] [PubMed] [Google Scholar]
  22. VOGEL H. J., BONNER D. M. Acetylornithinase of Escherichia coli: partial purification and some properties. J Biol Chem. 1956 Jan;218(1):97–106. [PubMed] [Google Scholar]
  23. YOUNG I. E., FITZ-JAMES P. C. Chemical and morphological studies of bacterial spore formation. II. Spore and parasporal protein formation in Bacillus cereus var. alesti. J Biophys Biochem Cytol. 1959 Dec;6:483–498. doi: 10.1083/jcb.6.3.483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Yousten A. A., Hanson R. S. Sporulation of tricarboxylic acid cycle mutants of Bacillus subtilis. J Bacteriol. 1972 Feb;109(2):886–894. doi: 10.1128/jb.109.2.886-894.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Yousten A. A., Rogoff M. H. Metabolism of Bacillus thuringiensis in relation to spore and crystal formation. J Bacteriol. 1969 Dec;100(3):1229–1236. doi: 10.1128/jb.100.3.1229-1236.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES