Skip to main content
Applied Microbiology logoLink to Applied Microbiology
. 1975 Nov;30(5):731–737. doi: 10.1128/am.30.5.731-737.1975

Carbohydrate Catabolism of Selected Strains in the Genus Agrobacterium

Larry O Arthur 1,1, Lawrence K Nakamura 1, Grant St Julian 1, Lee A Bulla Jr 1,2
PMCID: PMC187263  PMID: 128316

Abstract

Radiorespirometric and enzyme analyses were used to reveal the glucose-catabolizing mechanisms functioning in single strains of seven presumed Agrobacterium species. The Entner-Doudoroff and pentose cycle pathways functioned in A. radiobacter, A. tumefaciens, A. rubi, and A. rhizogenes. Whereas both catabolic pathways were utilized to an almost equal degree in the A. radiobacter and A. tumefaciens strains, use of the Entner-Doudoroff pathway predominated in the A. rubi and A. rhizogenes strains. A. stellulatum catabolized glucose almost solely through the Entner-Doudoroff pathway. In A. pseudotsugae and A. gypsophilae, glucose was metabolized mainly through the Emden-Meyerhof-Parnas pathway; the pentose phosphate pathway was also utilized.

Full text

PDF
731

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arthur L. O., Bulla L. A., Jr, Julian G. S., Nakamura L. K. Carbohydrate metabolism in Agrobacterium tumefaciens. J Bacteriol. 1973 Oct;116(1):304–313. doi: 10.1128/jb.116.1.304-313.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Beevers H. Intermediates of the Pentose Phosphate Pathway as Respiratory Substrates. Plant Physiol. 1956 Sep;31(5):339–347. doi: 10.1104/pp.31.5.339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. De Ley J., Bernaerts M., Rassel A., Guilmot J. Approach to an improved taxonomy of the genus Agrobacterium. J Gen Microbiol. 1966 Apr;43(1):7–17. doi: 10.1099/00221287-43-1-7. [DOI] [PubMed] [Google Scholar]
  4. Ghosh S., Ghosh D. Probable role of a membrane-bound phosphoenolpyruvate-hexose phosphotransferase system of Escherichia coli in the permeation of sugars. Indian J Biochem. 1968 Jun;5(2):49–52. [PubMed] [Google Scholar]
  5. HAYNES W. C., WICKERHAM L. J., HESSELTINE C. W. Maintenance of cultures of industrially important microorganisms. Appl Microbiol. 1955 Nov;3(6):361–368. doi: 10.1128/am.3.6.361-368.1955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Heberlein G. T., De Ley J., Tijtgat R. Deoxyribonucleic acid homology and taxonomy of Agrobacterium, Rhizobium, and Chromobacterium. J Bacteriol. 1967 Jul;94(1):116–124. doi: 10.1128/jb.94.1.116-124.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hylemon P. B., Phibbs P. V., Jr Independent regulation of hexose catabolizing enzymes and glucose transport activity in Pseudomonas aeruginosa. Biochem Biophys Res Commun. 1972 Sep 5;48(5):1041–1048. doi: 10.1016/0006-291x(72)90813-3. [DOI] [PubMed] [Google Scholar]
  8. KLEIN D. T., KLEIN R. M. Transmittance of tumor-inducing ability to avirulent crown-gall and related bacteria. J Bacteriol. 1953 Aug;66(2):220–228. doi: 10.1128/jb.66.2.220-228.1953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kaneshiro T. Methylation of the cellular lipid of methionine-requiring Agrobacterium tumefaciens. J Bacteriol. 1968 Jun;95(6):2078–2082. doi: 10.1128/jb.95.6.2078-2082.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  11. Lessie T., Neidhardt F. C. Adenosine triphosphate-linked control of Pseudomonas aeruginosa glucose-6-phosphate dehydrogenase. J Bacteriol. 1967 Apr;93(4):1337–1345. doi: 10.1128/jb.93.4.1337-1345.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Morse S. A., Stein S., Hines J. Glucose metabolism in Neisseria gonorrhoeae. J Bacteriol. 1974 Nov;120(2):702–714. doi: 10.1128/jb.120.2.702-714.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Spangler W. J., Gilmour C. M. Biochemistry of nitrate respiration in Pseudomonas stutzeri. I. Aerobic and nitrate respiration routes of carbohydrate catabolism. J Bacteriol. 1966 Jan;91(1):245–250. doi: 10.1128/jb.91.1.245-250.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Tiwari N. P., Campbell J. J. Enzymatic control of the metabolic activity of Pseudomonas aeruginosa grown in glucose or succinate media. Biochim Biophys Acta. 1969 Dec 30;192(3):395–401. doi: 10.1016/0304-4165(69)90388-2. [DOI] [PubMed] [Google Scholar]
  15. VARDANIS A., HOCHSTER R. M. On the mechanism of glucose metabolism in the plant tumor-inducing organism Agrobacterium tumefaciens. Can J Biochem Physiol. 1961 Jul;39:1165–1182. doi: 10.1139/o61-120. [DOI] [PubMed] [Google Scholar]
  16. WANG C. H., STERN I., GILMOUR C. M., KLUNGSOYR S., REED D. J., BIALY J. J., CHRISTENSEN B. E., CHELDELIN V. H. Comparative study of glucose catabolism by the radiorespirometric method. J Bacteriol. 1958 Aug;76(2):207–216. doi: 10.1128/jb.76.2.207-216.1958. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. ZAGALLO A. C., WANG C. H. Comparative carbohydrate catabolism in Arthrobacter. J Gen Microbiol. 1962 Nov;29:389–401. doi: 10.1099/00221287-29-3-389. [DOI] [PubMed] [Google Scholar]
  18. Zagallo A. C., Wang C. H. Comparative carbohydrate catabolism in corynebacteria. J Gen Microbiol. 1967 Jun;47(3):347–357. doi: 10.1099/00221287-47-3-347. [DOI] [PubMed] [Google Scholar]
  19. Zagallo A. C., Wang C. H. Comparative glucose catabolism of Xanthomonas species. J Bacteriol. 1967 Mar;93(3):970–975. doi: 10.1128/jb.93.3.970-975.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES