Abstract
MICs of a newly developed benzoxazinorifamycin derivative, KRM-1648, for Mycobacterium avium complex (MAC) were determined by the BACTEC 460 TB system and compared with those of other known antimicrobial agents. The radiometric method gave a fast, accurate, and reproducible MIC for each antimicrobial agent. MICs of KRM-1648 for 30 strains of MAC (10 strains each of M. avium isolated from AIDS and non-AIDS patients and of Mycobacterium intracellulare isolated from non-AIDS patients) were measured. The MICs, ranging from 0.004 to 0.0625 microgram/ml, were the lowest of all tested drugs, including rifampin, rifabutin, streptomycin, kanamycin, isoniazid, ethambutol, ofloxacin, ciprofloxacin, sparfloxacin, and clarithromycin. The MICs were 2 to 512 and 1 to 32 times lower than those of rifampin and rifabutin, respectively. With rifampin and ethambutol, there were some differences between the MICs for M. avium isolated from AIDS patients (American) and those for M. avium from non-AIDS patients (Japanese). Moreover, appreciable differences between the MICs of some drugs against M. avium and M. intracellulare isolated from non-AIDS patients were found. Many strains of M. avium were more susceptible to ofloxacin than M. intracellulare, but, conversely, M. avium was more resistant to rifampin, streptomycin, ethambutol, and clarithromycin than M. intracellulare.
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Heifets L. B., Lindholm-Levy P. J., Comstock R. D. Clarithromycin minimal inhibitory and bactericidal concentrations against Mycobacterium avium. Am Rev Respir Dis. 1992 Apr;145(4 Pt 1):856–858. doi: 10.1164/ajrccm/145.4_Pt_1.856. [DOI] [PubMed] [Google Scholar]
- Heifets L. B., Lindholm-Levy P. J., Flory M. A. Bactericidal activity in vitro of various rifamycins against Mycobacterium avium and Mycobacterium tuberculosis. Am Rev Respir Dis. 1990 Mar;141(3):626–630. doi: 10.1164/ajrccm/141.3.626. [DOI] [PubMed] [Google Scholar]
- Kirihara J. M., Hillier S. L., Coyle M. B. Improved detection times for Mycobacterium avium complex and Mycobacterium tuberculosis with the BACTEC radiometric system. J Clin Microbiol. 1985 Nov;22(5):841–845. doi: 10.1128/jcm.22.5.841-845.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee C. N., Heifets L. B. Determination of minimal inhibitory concentrations of antituberculosis drugs by radiometric and conventional methods. Am Rev Respir Dis. 1987 Aug;136(2):349–352. doi: 10.1164/ajrccm/136.2.349. [DOI] [PubMed] [Google Scholar]
- Park C. H., Hixon D. L., Ferguson C. B., Hall S. L., Risheim C. C., Cook C. B. Rapid recovery of mycobacteria from clinical specimens using automated radiometric technic. Am J Clin Pathol. 1984 Mar;81(3):341–345. doi: 10.1093/ajcp/81.3.341. [DOI] [PubMed] [Google Scholar]
- Roberts G. D., Goodman N. L., Heifets L., Larsh H. W., Lindner T. H., McClatchy J. K., McGinnis M. R., Siddiqi S. H., Wright P. Evaluation of the BACTEC radiometric method for recovery of mycobacteria and drug susceptibility testing of Mycobacterium tuberculosis from acid-fast smear-positive specimens. J Clin Microbiol. 1983 Sep;18(3):689–696. doi: 10.1128/jcm.18.3.689-696.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saito H., Tomioka H., Sato K., Emori M., Yamane T., Yamashita K., Hosoe K., Hidaka T. In vitro antimycobacterial activities of newly synthesized benzoxazinorifamycins. Antimicrob Agents Chemother. 1991 Mar;35(3):542–547. doi: 10.1128/aac.35.3.542. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Siddiqi S. H., Hawkins J. E., Laszlo A. Interlaboratory drug susceptibility testing of Mycobacterium tuberculosis by a radiometric procedure and two conventional methods. J Clin Microbiol. 1985 Dec;22(6):919–923. doi: 10.1128/jcm.22.6.919-923.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Siddiqi S. H., Hwangbo C. C., Silcox V., Good R. C., Snider D. E., Jr, Middlebrook G. Rapid radiometric methods to detect and differentiate Mycobacterium tuberculosis/M. bovis from other mycobacterial species. Am Rev Respir Dis. 1984 Oct;130(4):634–640. doi: 10.1164/arrd.1984.130.4.634. [DOI] [PubMed] [Google Scholar]
- Siddiqi S. H., Libonati J. P., Middlebrook G. Evaluation of rapid radiometric method for drug susceptibility testing of Mycobacterium tuberculosis. J Clin Microbiol. 1981 May;13(5):908–912. doi: 10.1128/jcm.13.5.908-912.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tarrand J. J., Gröschel D. H. Evaluation of the BACTEC radiometric method for detection of 1% resistant populations of Mycobacterium tuberculosis. J Clin Microbiol. 1985 Jun;21(6):941–946. doi: 10.1128/jcm.21.6.941-946.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tomioka H., Saito H., Sato K., Yamane T., Yamashita K., Hosoe K., Fujii K., Hidaka T. Chemotherapeutic efficacy of a newly synthesized benzoxazinorifamycin, KRM-1648, against Mycobacterium avium complex infection induced in mice. Antimicrob Agents Chemother. 1992 Feb;36(2):387–393. doi: 10.1128/aac.36.2.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Woodley C. L. Evaluation of streptomycin and ethambutol concentrations for susceptibility testing of Mycobacterium tuberculosis by radiometric and conventional procedures. J Clin Microbiol. 1986 Feb;23(2):385–386. doi: 10.1128/jcm.23.2.385-386.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
