Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1993 Mar;37(3):523–531. doi: 10.1128/aac.37.3.523

The fractional maximal effect method: a new way to characterize the effect of antibiotic combinations and other nonlinear pharmacodynamic interactions.

R C Li 1, J J Schentag 1, D E Nix 1
PMCID: PMC187702  PMID: 8460921

Abstract

The checkerboard technique leading to the fractional inhibitory concentration indexes and the killing curve method are currently the most widely used methods to study antibiotic combinations. For both methods, experimental conditions and interpretation criteria are somewhat arbitrary. The relevance of the fractional inhibitory concentration index computation, in the classic case of additivity [P = d1/(D1)p + d2/(D2)p, where d1 and d2 are the doses of drugs 1 and 2 in combination to produce an effect at a percent level (P) and (D1)p and (D2)p are the doses required for the two respective drugs alone to produce the same effect] relies on the assumption of a linear relationship between the MIC and the concentration of the test antibiotics. In addition, there is no consensus as to the definition of synergy in killing curve interpretation. The fractional maximal effect (FME) method is a new approach which was developed to handle the nonlinear pharmacodynamics exhibited by antibiotics and other drugs. This method relies on the mathematical linearization of the nonlinear concentration-effect scales and eventual construction of an isobologram-type data plot. The FME method was applied to study interactions between several antibiotic combinations: amoxicillin and tetracycline, ciprofloxacin and erythromycin, and ticarcillin and tobramycin. These combinations were selected because the pharmacologic basis for their interactions has been previously described. The FME method correctly identified antagonism for the first two combinations and synergism for the last combination. Conclusions were reproducible across the range of concentrations studied. Besides providing information on the nature of the interaction, the method can rapidly explore the effect of changing concentration ratios of two antimicrobial agents on the degrees of interaction. The FME method may be applied to interactions between drugs or agents with either a linear or nonlinear endpoint measurement. Methods frequently used for drug combination testing are also discussed in the paper.

Full text

PDF
523

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berenbaum M. C. Correlations between methods for measurement of synergy. J Infect Dis. 1980 Sep;142(3):476–480. doi: 10.1093/infdis/142.3.476. [DOI] [PubMed] [Google Scholar]
  2. Berenbaum M. C. Synergy, additivism and antagonism in immunosuppression. A critical review. Clin Exp Immunol. 1977 Apr;28(1):1–18. [PMC free article] [PubMed] [Google Scholar]
  3. Berenbaum M. C. What is synergy? Pharmacol Rev. 1989 Jun;41(2):93–141. [PubMed] [Google Scholar]
  4. Briceland L. L., Pasko M. T., Mylotte J. M. Serum bactericidal rate as measure of antibiotic interactions. Antimicrob Agents Chemother. 1987 May;31(5):679–685. doi: 10.1128/aac.31.5.679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chou T. C., Talalay P. Generalized equations for the analysis of inhibitions of Michaelis-Menten and higher-order kinetic systems with two or more mutually exclusive and nonexclusive inhibitors. Eur J Biochem. 1981 Mar 16;115(1):207–216. doi: 10.1111/j.1432-1033.1981.tb06218.x. [DOI] [PubMed] [Google Scholar]
  6. Chou T. C., Talalay P. Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul. 1984;22:27–55. doi: 10.1016/0065-2571(84)90007-4. [DOI] [PubMed] [Google Scholar]
  7. Crumplin G. C., Smith J. T. Nalidixic acid: an antibacterial paradox. Antimicrob Agents Chemother. 1975 Sep;8(3):251–261. doi: 10.1128/aac.8.3.251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Deitz W. H., Cook T. M., Goss W. A. Mechanism of action of nalidixic acid on Escherichia coli. 3. Conditions required for lethality. J Bacteriol. 1966 Feb;91(2):768–773. doi: 10.1128/jb.91.2.768-773.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. ELION G. B., SINGER S., HITCHINGS G. H. Antagonists of nucleic acid derivatives. VIII. Synergism in combinations of biochemically related antimetabolites. J Biol Chem. 1954 Jun;208(2):477–488. [PubMed] [Google Scholar]
  10. Garrett E. R., Heman-Ackah S. M. Microbial kinetics and dependencies of individual and combined antibiotic inhibitors of protein biosynthesis. Antimicrob Agents Chemother. 1973 Nov;4(5):574–584. doi: 10.1128/aac.4.5.574. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Garrett E. R. Kinetics of antimicrobial action. Scand J Infect Dis Suppl. 1978;(14):54–85. [PMC free article] [PubMed] [Google Scholar]
  12. Garrett E. R., Wright O. K. Kinetics and mechanisms of action of drugs on microorganisms. VII. Quantitative adherence of sulfonamide action on microbial growth to a receptor-site model. J Pharm Sci. 1967 Dec;56(12):1576–1585. doi: 10.1002/jps.2600561209. [DOI] [PubMed] [Google Scholar]
  13. Hall M. J., Middleton R. F., Westmacott D. The fractional inhibitory concentration (FIC) index as a measure of synergy. J Antimicrob Chemother. 1983 May;11(5):427–433. doi: 10.1093/jac/11.5.427. [DOI] [PubMed] [Google Scholar]
  14. Hallander H. O., Dornbusch K., Gezelius L., Jacobson K., Karlsson I. Synergism between aminoglycosides and cephalosporins with antipseudomonal activity: interaction index and killing curve method. Antimicrob Agents Chemother. 1982 Nov;22(5):743–752. doi: 10.1128/aac.22.5.743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hilf M., Yu V. L., Sharp J., Zuravleff J. J., Korvick J. A., Muder R. R. Antibiotic therapy for Pseudomonas aeruginosa bacteremia: outcome correlations in a prospective study of 200 patients. Am J Med. 1989 Nov;87(5):540–546. doi: 10.1016/s0002-9343(89)80611-4. [DOI] [PubMed] [Google Scholar]
  16. JAWETZ E., GUNNISON J. B., SPECK R. S., COLEMAN V. R. Studies on antibiotic synergism and antagonism; the interference of chloramphenicol with the action of penicillin. AMA Arch Intern Med. 1951 Mar;87(3):349–359. doi: 10.1001/archinte.1951.03810030022002. [DOI] [PubMed] [Google Scholar]
  17. LOEWE S. Antagonisms and antagonists. Pharmacol Rev. 1957 Jun;9(2):237–242. [PubMed] [Google Scholar]
  18. LOEWE S. The problem of synergism and antagonism of combined drugs. Arzneimittelforschung. 1953 Jun;3(6):285–290. [PubMed] [Google Scholar]
  19. Miller I. Statistical designs for experiments in combination therapy. Cancer Chemother Rep 2. 1974 Mar;4(1):151–156. [PubMed] [Google Scholar]
  20. Moellering R. C., Jr Antimicrobial synergism--an elusive concept. J Infect Dis. 1979 Oct;140(4):639–641. doi: 10.1093/infdis/140.4.639. [DOI] [PubMed] [Google Scholar]
  21. Moellering R. C., Jr, Medoff G., Leech I., Wennersten C., Kunz L. J. Antibiotic synergism against Listeria monocytogenes. Antimicrob Agents Chemother. 1972 Jan;1(1):30–34. doi: 10.1128/aac.1.1.30. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Moellering R. C., Jr, Wennersten C., Weinberg A. N. Studies on antibiotic synergism against enterococci. I. Bacteriologic studies. J Lab Clin Med. 1971 May;77(5):821–828. [PubMed] [Google Scholar]
  23. Moody J. A., Gerding D. N., Peterson L. R. Evaluation of ciprofloxacin's synergism with other agents by multiple in vitro methods. Am J Med. 1987 Apr 27;82(4A):44–54. [PubMed] [Google Scholar]
  24. Norden C. W., Wentzel H., Keleti E. Comparison of techniques for measurement of in vitro antibiotic synergism. J Infect Dis. 1979 Oct;140(4):629–633. doi: 10.1093/infdis/140.4.629. [DOI] [PubMed] [Google Scholar]
  25. Prichard M. N., Shipman C., Jr A three-dimensional model to analyze drug-drug interactions. Antiviral Res. 1990 Oct-Nov;14(4-5):181–205. doi: 10.1016/0166-3542(90)90001-n. [DOI] [PubMed] [Google Scholar]
  26. Sühnel J. Evaluation of synergism or antagonism for the combined action of antiviral agents. Antiviral Res. 1990 Jan;13(1):23–39. doi: 10.1016/0166-3542(90)90042-6. [DOI] [PubMed] [Google Scholar]
  27. Thonus I. P., Fontijne P., Michel M. F. Ampicillin susceptibility and ampicillin-induced killing rate of Escherichia coli. Antimicrob Agents Chemother. 1982 Sep;22(3):386–390. doi: 10.1128/aac.22.3.386. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Tsuji A., Hamano S., Asano T., Nakashima E., Yamana T., Mitsuhashi S. Microbial kinetics of beta-lactam antibiotics against Escherichia coli. J Pharm Sci. 1984 Oct;73(10):1418–1422. doi: 10.1002/jps.2600731024. [DOI] [PubMed] [Google Scholar]
  29. Wallace J. F., Smith R. H., Garcia M., Petersdorf R. G. Studies on the pathogenesis of meningitis. VI. Antagonism between penicillin and chloramphenicol in experimental pneumococcal meningitis. J Lab Clin Med. 1967 Sep;70(3):408–418. [PubMed] [Google Scholar]
  30. Weinstein R. J., Young L. S., Hewitt W. L. Comparison of methods for assessing in vitro antibiotic synergism against Pseudomonas and Serratia. J Lab Clin Med. 1975 Nov;86(5):853–862. [PubMed] [Google Scholar]
  31. Zhi J., Nightingale C. H., Quintiliani R. A pharmacodynamic model for the activity of antibiotics against microorganisms under nonsaturable conditions. J Pharm Sci. 1986 Nov;75(11):1063–1067. doi: 10.1002/jps.2600751108. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES