Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1993 Apr;37(4):702–707. doi: 10.1128/aac.37.4.702

Efficacy of prophylaxis with beta-lactams and beta-lactam-beta-lactamase inhibitor combinations against wound infection by methicillin-resistant and borderline-susceptible Staphylococcus aureus in a guinea pig model.

D S Kernodle 1, A B Kaiser 1
PMCID: PMC187738  PMID: 8494364

Abstract

Although some beta-lactams and beta-lactam-beta-lactamase inhibitor combinations exhibit activity against methicillin-resistant Staphylococcus aureus, there remains the concern that therapeutic failures may result from the selection of resistant subpopulations. The prophylactic use of these antibiotics in clean surgery, however, may prove adequate since wound infections arise from the inoculation of small numbers of bacteria. In this clinical setting, heterogeneity in the phenotypic expression of beta-lactam resistance may facilitate antibiotic efficacy. Similarly, beta-lactamase-mediated resistance in S. aureus is dependent on inoculum size, and it may be possible to prevent infection from small inocula with relatively labile beta-lactams. To test this hypothesis, antibiotics were administered to guinea pigs as prophylaxis against infection by two methicillin-resistant strains and one borderline-susceptible strain. Following prophylaxis with sulbactam or placebo, inoculation of only a dozen or fewer bacteria had a 50% probability of creating an abscess (50% infective dose [ID50]). The efficacy of ampicillin was similar to that of cefazolin, exhibiting moderate activity against the borderline-susceptible strain (ID50s, greater than 300 bacteria) and minimal activity against the methicillin-resistant strains (ID50s, fewer than 100 bacteria). Coadministration of sulbactam with ampicillin or cefazolin yielded better results than the beta-lactam alone for five of six strain-beta-lactam combinations, including an 80-fold increase in the efficacy of ampicillin-sulbactam compared with that of ampicillin for one methicillin-resistant strain (ID50s, 2,017 and 25 bacteria, respectively). Prophylaxis with beta-lactams, especially beta-lactam-beta-lactamase inhibitor combinations, reduces the risk of wound infection by beta-lactam-resistant S. aureus.

Full text

PDF
702

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aldridge K. E., Sanders C. V., Marier R. L. Variation in the potentiation of beta-lactam antibiotic activity by clavulanic acid and sulbactam against multiply antibiotic-resistant bacteria. J Antimicrob Chemother. 1986 Apr;17(4):463–469. doi: 10.1093/jac/17.4.463. [DOI] [PubMed] [Google Scholar]
  2. Barg N., Chambers H., Kernodle D. Borderline susceptibility to antistaphylococcal penicillins is not conferred exclusively by the hyperproduction of beta-lactamase. Antimicrob Agents Chemother. 1991 Oct;35(10):1975–1979. doi: 10.1128/aac.35.10.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brady L. M., Thomson M., Palmer M. A., Harkness J. L. Successful control of endemic MRSA in a cardiothoracic surgical unit. Med J Aust. 1990 Mar 5;152(5):240–245. doi: 10.5694/j.1326-5377.1990.tb120917.x. [DOI] [PubMed] [Google Scholar]
  4. Brumfitt W., Hamilton-Miller J. Methicillin-resistant Staphylococcus aureus. N Engl J Med. 1989 May 4;320(18):1188–1196. doi: 10.1056/NEJM198905043201806. [DOI] [PubMed] [Google Scholar]
  5. Cantoni L., Wenger A., Glauser M. P., Bille J. Comparative efficacy of amoxicillin-clavulanate, cloxacillin, and vancomycin against methicillin-sensitive and methicillin-resistant Staphylococcus aureus endocarditis in rats. J Infect Dis. 1989 May;159(5):989–993. doi: 10.1093/infdis/159.5.989. [DOI] [PubMed] [Google Scholar]
  6. Chambers H. F. Methicillin-resistant staphylococci. Clin Microbiol Rev. 1988 Apr;1(2):173–186. doi: 10.1128/cmr.1.2.173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chambers H. F., Sachdeva M. Binding of beta-lactam antibiotics to penicillin-binding proteins in methicillin-resistant Staphylococcus aureus. J Infect Dis. 1990 Jun;161(6):1170–1176. doi: 10.1093/infdis/161.6.1170. [DOI] [PubMed] [Google Scholar]
  8. Chambers H. F., Sachdeva M., Kennedy S. Binding affinity for penicillin-binding protein 2a correlates with in vivo activity of beta-lactam antibiotics against methicillin-resistant Staphylococcus aureus. J Infect Dis. 1990 Sep;162(3):705–710. doi: 10.1093/infdis/162.3.705. [DOI] [PubMed] [Google Scholar]
  9. Chin N. X., Neu N. M., Neu H. C. Synergy of sulbactam and ampicillin against methicillin-resistant staphylococci. Drugs Exp Clin Res. 1986;12(12):939–942. [PubMed] [Google Scholar]
  10. ELEK S. D., CONEN P. E. The virulence of Staphylococcus pyogenes for man; a study of the problems of wound infection. Br J Exp Pathol. 1957 Dec;38(6):573–586. [PMC free article] [PubMed] [Google Scholar]
  11. Foulds G. Pharmacokinetics of sulbactam/ampicillin in humans: a review. Rev Infect Dis. 1986 Nov-Dec;8 (Suppl 5):S503–S511. doi: 10.1093/clinids/8.supplement_5.503. [DOI] [PubMed] [Google Scholar]
  12. Franciolli M., Bille J., Glauser M. P., Moreillon P. Beta-lactam resistance mechanisms of methicillin-resistant Staphylococcus aureus. J Infect Dis. 1991 Mar;163(3):514–523. doi: 10.1093/infdis/163.3.514. [DOI] [PubMed] [Google Scholar]
  13. Hackbarth C. J., Chambers H. F. Methicillin-resistant staphylococci: detection methods and treatment of infections. Antimicrob Agents Chemother. 1989 Jul;33(7):995–999. doi: 10.1128/aac.33.7.995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kaiser A. B., Kernodle D. S., Parker R. A. Low-inoculum model of surgical wound infection. J Infect Dis. 1992 Aug;166(2):393–399. doi: 10.1093/infdis/166.2.393. [DOI] [PubMed] [Google Scholar]
  15. Kazmierczak A., Duez J. M., Pechinot A., Nordmann P., Labia R. In vitro bactericidal activity of sulbactam plus ampicillin against methicillin-resistant Staphylococcus aureus. Rev Infect Dis. 1986 Nov-Dec;8 (Suppl 5):S549–S554. doi: 10.1093/clinids/8.supplement_5.s549. [DOI] [PubMed] [Google Scholar]
  16. Kernodle D. S., Classen D. C., Burke J. P., Kaiser A. B. Failure of cephalosporins to prevent Staphylococcus aureus surgical wound infections. JAMA. 1990 Feb 16;263(7):961–966. [PubMed] [Google Scholar]
  17. Kernodle D. S., McGraw P. A., Stratton C. W., Kaiser A. B. Use of extracts versus whole-cell bacterial suspensions in the identification of Staphylococcus aureus beta-lactamase variants. Antimicrob Agents Chemother. 1990 Mar;34(3):420–425. doi: 10.1128/aac.34.3.420. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kernodle D. S., Stratton C. W., McMurray L. W., Chipley J. R., McGraw P. A. Differentiation of beta-lactamase variants of Staphylococcus aureus by substrate hydrolysis profiles. J Infect Dis. 1989 Jan;159(1):103–108. doi: 10.1093/infdis/159.1.103. [DOI] [PubMed] [Google Scholar]
  19. Kirshbaum A., Arret B. Outline of details for official microbiological assays of antibiotics. J Pharm Sci. 1967 Apr;56(4):511–515. doi: 10.1002/jps.2600560418. [DOI] [PubMed] [Google Scholar]
  20. Massanari R. M., Pfaller M. A., Wakefield D. S., Hammons G. T., McNutt L. A., Woolson R. F., Helms C. M. Implications of acquired oxacillin resistance in the management and control of Staphylococcus aureus infections. J Infect Dis. 1988 Oct;158(4):702–709. doi: 10.1093/infdis/158.4.702. [DOI] [PubMed] [Google Scholar]
  21. McDougal L. K., Thornsberry C. The role of beta-lactamase in staphylococcal resistance to penicillinase-resistant penicillins and cephalosporins. J Clin Microbiol. 1986 May;23(5):832–839. doi: 10.1128/jcm.23.5.832-839.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. McMurray L. W., Kernodle D. S., Barg N. L. Characterization of a widespread strain of methicillin-susceptible Staphylococcus aureus associated with nosocomial infections. J Infect Dis. 1990 Sep;162(3):759–762. doi: 10.1093/infdis/162.3.759. [DOI] [PubMed] [Google Scholar]
  23. Moreillon P., Franciolli M., Cantoni L., Bille J., Glauser M. P. Beta-lactam antibiotics active against methicillin-resistant Staphylococcus aureus. J Infect Dis. 1991 May;163(5):1165–1166. doi: 10.1093/infdis/163.5.1165. [DOI] [PubMed] [Google Scholar]
  24. Murakami K., Nomura K., Doi M., Yoshida T. Production of low-affinity penicillin-binding protein by low- and high-resistance groups of methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 1987 Sep;31(9):1307–1311. doi: 10.1128/aac.31.9.1307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Perceval A. Methicillin-resistant Staphylococcus aureus infections of sternal wounds. Infect Control Hosp Epidemiol. 1992 Mar;13(3):173–174. doi: 10.1086/646503. [DOI] [PubMed] [Google Scholar]
  26. Retsema J. A., English A. R., Girard A., Lynch J. E., Anderson M., Brennan L., Cimochowski C., Faiella J., Norcia W., Sawyer P. Sulbactam/ampicillin: in vitro spectrum, potency, and activity in models of acute infection. Rev Infect Dis. 1986 Nov-Dec;8 (Suppl 5):S528–S534. doi: 10.1093/clinids/8.supplement_5.s528. [DOI] [PubMed] [Google Scholar]
  27. Sabath L. D., Garner C., Wilcox C., Finland M. Effect of inoculum and of beta-lactamase on the anti-staphylococcal activity of thirteen penicillins and cephalosporins. Antimicrob Agents Chemother. 1975 Sep;8(3):344–349. doi: 10.1128/aac.8.3.344. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Sykes R. B., Matthew M. The beta-lactamases of gram-negative bacteria and their role in resistance to beta-lactam antibiotics. J Antimicrob Chemother. 1976 Jun;2(2):115–157. doi: 10.1093/jac/2.2.115. [DOI] [PubMed] [Google Scholar]
  29. Thauvin-Eliopoulos C., Rice L. B., Eliopoulos G. M., Moellering R. C., Jr Efficacy of oxacillin and ampicillin-sulbactam combination in experimental endocarditis caused by beta-lactamase-hyperproducing Staphylococcus aureus. Antimicrob Agents Chemother. 1990 May;34(5):728–732. doi: 10.1128/aac.34.5.728. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Utsui Y., Yokota T. Role of an altered penicillin-binding protein in methicillin- and cephem-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 1985 Sep;28(3):397–403. doi: 10.1128/aac.28.3.397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Washburn R. G., Durack D. T. Efficacy of ampicillin plus a beta-lactamase inhibitor (CP-45,899) in experimental endocarditis due to Staphylococcus aureus. J Infect Dis. 1981 Sep;144(3):237–243. doi: 10.1093/infdis/144.3.237. [DOI] [PubMed] [Google Scholar]
  32. Zygmunt D. J., Stratton C. W., Kernodle D. S. Characterization of four beta-lactamases produced by Staphylococcus aureus. Antimicrob Agents Chemother. 1992 Feb;36(2):440–445. doi: 10.1128/aac.36.2.440. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES