Skip to main content
The American Journal of Pathology logoLink to The American Journal of Pathology
. 1990 Feb;136(2):391–398.

Matrix vesicle biogenesis in vitro by rachitic and normal rat chondrocytes.

H C Anderson 1, D J Stechschulte Jr 1, D E Collins 1, D H Jacobs 1, D C Morris 1, H H Hsu 1, P A Redford 1, S Zeiger 1
PMCID: PMC1877418  PMID: 2305834

Abstract

Calcifying matrix vesicles (MVs) are released from chondrocytes and osteoblasts in monolayer culture. In the present studies, we tested the ability of rachitic versus normal rat growth plate chondrocytes in micromass or monolayer primary cultures to produce MVs. Unlike earlier reports of in vitro MV biogenesis by chicken chondrocytes in which most MVs were released into the medium, we found that most of the released rat matrix vesicles were entrapped in a newly formed cartilaginous matrix enveloping the cells. These matrix-associated MVs could be isolated by mild collagenase treatment and concentrated by differential centrifugation. Vesicle production slowed in the older 2- to 4-week-old cultures and, unlike vesicle release from cultured chicken chondrocytes, active vesicle production did not show a second burst of activity at 3 to 4 weeks. Alkaline phosphatase (ALP) activity diminished with time in culture in cells and matrix vesicles, suggesting a decrease in differentiative expression. Protein profiles on SDS polyacrylamide gels of native matrix vesicles and culture-derived MVs from rachitic and normal cells were quite similar and showed a typical simplified protein pattern as compared to chondrocyte plasma membrane proteins. There were distinctive proteins migrating at 130, 80 to 95, 66, 43, 20, and 14 kd. Culture-derived MVs showed vigorous in vitro calcifying activity that was ALP related. We conclude that 1) rachitic chondrocytes are essentially normal in their matrix vesicle production; 2) matrix entrapment of MVs is a characteristic of rat chondrocyte cultures; and 3) culture-produced MVs are similar to native MVs in protein profile and calcifiability, and thus can be studied as a model for normal MV composition and calcification.

Full text

PDF
391

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akisaka T., Kawaguchi H., Subita G. P., Shigenaga Y., Gay C. V. Ultrastructure of matrix vesicles in chick growth plate as revealed by quick freezing and freeze substitution. Calcif Tissue Int. 1988 Jun;42(6):383–393. doi: 10.1007/BF02556357. [DOI] [PubMed] [Google Scholar]
  2. Akisaka T., Shigenaga Y. Ultrastructure of growing epiphyseal cartilage processed by rapid freezing and freeze-substitution. J Electron Microsc (Tokyo) 1983;32(4):305–320. [PubMed] [Google Scholar]
  3. Ali S. Y., Evans L. The uptake of [Ca]calcium ions by matrix vesicles isolated from calcifying cartilage (Short Communication). Biochem J. 1973 Jun;134(2):647–650. doi: 10.1042/bj1340647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ali S. Y., Sajdera S. W., Anderson H. C. Isolation and characterization of calcifying matrix vesicles from epiphyseal cartilage. Proc Natl Acad Sci U S A. 1970 Nov;67(3):1513–1520. doi: 10.1073/pnas.67.3.1513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Anderson H. C., Cecil R., Sajdera S. W. Calcification of rachitic rat cartilage in vitro by extracellular matrix vesicles. Am J Pathol. 1975 May;79(2):237–254. [PMC free article] [PubMed] [Google Scholar]
  6. Anderson H. C., Reynolds J. J. Pyrophosphate stimulation of calcium uptake into cultured embryonic bones. Fine structure of matrix vesicles and their role in calcification. Dev Biol. 1973 Oct;34(2):211–227. doi: 10.1016/0012-1606(73)90351-5. [DOI] [PubMed] [Google Scholar]
  7. Anderson H. C., Sajdera S. W. Calcification of rachitic cartilage to study matrix vesicle function. Fed Proc. 1976 Feb;35(2):148–153. [PubMed] [Google Scholar]
  8. Anderson H. C. Vesicles associated with calcification in the matrix of epiphyseal cartilage. J Cell Biol. 1969 Apr;41(1):59–72. doi: 10.1083/jcb.41.1.59. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Bernard G. W., Pease D. C. An electron microscopic study of initial intramembranous osteogenesis. Am J Anat. 1969 Jul;125(3):271–290. doi: 10.1002/aja.1001250303. [DOI] [PubMed] [Google Scholar]
  10. Bernard G. W. Ultrastructural observations of initial calcification in dentine and enamel. J Ultrastruct Res. 1972 Oct;41(1):1–17. doi: 10.1016/s0022-5320(72)90034-2. [DOI] [PubMed] [Google Scholar]
  11. Bohn W. W., Stein R. M., Hsu H. H., Morris D. C., Anderson H. C. Isolation of a plasma membrane-enriched fraction from collagenase-suspended rachitic rat growth plate chondrocytes. J Orthop Res. 1984;1(3):319–324. doi: 10.1002/jor.1100010312. [DOI] [PubMed] [Google Scholar]
  12. Bonucci E. Fine structure and histochemistry of "calcifying globules" in epiphyseal cartilage. Z Zellforsch Mikrosk Anat. 1970;103(2):192–217. doi: 10.1007/BF00337312. [DOI] [PubMed] [Google Scholar]
  13. Boyan B. D., Schwartz Z., Swain L. D., Carnes D. L., Jr, Zislis T. Differential expression of phenotype by resting zone and growth region costochondral chondrocytes in vitro. Bone. 1988;9(3):185–194. doi: 10.1016/8756-3282(88)90008-7. [DOI] [PubMed] [Google Scholar]
  14. Cotmore J. M., Nichols G., Jr, Wuthier R. E. Phospholipid-calcium phosphate complex: enhanced calcium migration in the presence of phosphate. Science. 1971 Jun 25;172(3990):1339–1341. doi: 10.1126/science.172.3990.1339. [DOI] [PubMed] [Google Scholar]
  15. Eisenmann D. R., Glick P. L. Ultrastructure of initial crystal formation in dentin. J Ultrastruct Res. 1972 Oct;41(1):18–28. doi: 10.1016/s0022-5320(72)90035-4. [DOI] [PubMed] [Google Scholar]
  16. Fallon M. D., Whyte M. P., Teitelbaum S. L. Stereospecific inhibition of alkaline phosphatase by L-tetramisole prevents in vitro cartilage calcification. Lab Invest. 1980 Dec;43(6):489–494. [PubMed] [Google Scholar]
  17. Genge B. R., Wu L. N., Wuthier R. E. Identification of phospholipid-dependent calcium-binding proteins as constituents of matrix vesicles. J Biol Chem. 1989 Jun 25;264(18):10917–10921. [PubMed] [Google Scholar]
  18. Golub E. E., Schattschneider S. C., Berthold P., Burke A., Shapiro I. M. Induction of chondrocyte vesiculation in vitro. J Biol Chem. 1983 Jan 10;258(1):616–621. [PubMed] [Google Scholar]
  19. Hale J. E., Wuthier R. E. The mechanism of matrix vesicle formation. Studies on the composition of chondrocyte microvilli and on the effects of microfilament-perturbing agents on cellular vesiculation. J Biol Chem. 1987 Feb 5;262(4):1916–1925. [PubMed] [Google Scholar]
  20. Hsu H. H., Munoz P. A., Barr J., Oppliger I., Morris D. C., Vaananen H. K., Tarkenton N., Anderson H. C. Purification and partial characterization of alkaline phosphatase of matrix vesicles from fetal bovine epiphyseal cartilage. Purification by monoclonal antibody affinity chromatography. J Biol Chem. 1985 Feb 10;260(3):1826–1831. [PubMed] [Google Scholar]
  21. Johnson T. F., Morris D. C., Anderson H. C. Matrix vesicles and calcification of rachitic rat osteoid. J Exp Pathol. 1989 Summer;4(3):123–132. [PubMed] [Google Scholar]
  22. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  23. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  24. Losa G. A., Heumann D., Carrel S., von Fliedner V., Mach J. P. Characterization of membrane vesicles circulating in the serum of patients with common acute lymphoblastic leukemia. Lab Invest. 1986 Nov;55(5):573–579. [PubMed] [Google Scholar]
  25. Martino L. J., Yeager V. L., Taylor J. J. An ultrastructural study of the role of calcification nodules in the mineralization of woven bone. Calcif Tissue Int. 1979 Mar 13;27(1):57–64. doi: 10.1007/BF02441162. [DOI] [PubMed] [Google Scholar]
  26. Matsuzawa T., Anderson H. C. Phosphatases of epiphyseal cartilage studied by electron microscopic cytochemical methods. J Histochem Cytochem. 1971 Dec;19(12):801–808. doi: 10.1177/19.12.801. [DOI] [PubMed] [Google Scholar]
  27. Murphree S., Hsu H. H., Anderson H. C. In vitro formation of crystalline apatite by matrix vesicles isolated from rachitic rat epiphyseal cartilage. Calcif Tissue Int. 1982;34 (Suppl 2):S62–S68. [PubMed] [Google Scholar]
  28. Nair B. C., Johnson D. E., Majeska R. J., Rodkey J. A., Bennett C. D., Rodan G. A. Rat alkaline phosphatase. II. Structural similarities between the osteosarcoma, bone, kidney, and placenta isoenzymes. Arch Biochem Biophys. 1987 Apr;254(1):28–34. doi: 10.1016/0003-9861(87)90077-4. [DOI] [PubMed] [Google Scholar]
  29. Peress N. S., Anderson H. C., Sajdera S. W. The lipids of matrix vesicles from bovine fetal epiphyseal cartilage. Calcif Tissue Res. 1974 May 28;14(4):275–281. doi: 10.1007/BF02060301. [DOI] [PubMed] [Google Scholar]
  30. Rabinovitch A. L., Anderson H. C. Biogenesis of matrix vesicles in cartilage growth plates. Fed Proc. 1976 Feb;35(2):112–116. [PubMed] [Google Scholar]
  31. Schwartz Z., Knight G., Swain L. D., Boyan B. D. Localization of vitamin D3-responsive alkaline phosphatase in cultured chondrocytes. J Biol Chem. 1988 May 5;263(13):6023–6026. [PubMed] [Google Scholar]
  32. Sisca R. F., Provenza D. V. Initial dentin formation in human deciduous teeth. An electron microscope study. Calcif Tissue Res. 1972;9(1):1–16. doi: 10.1007/BF02061941. [DOI] [PubMed] [Google Scholar]
  33. Sivaramakrishnan M., Burke M. Studies on the subunit interactions of skeletal muscle myosin subfragment 1. Evidence for subunit exchange between isozymes under physiological ionic strength and temperature. J Biol Chem. 1981 Mar 25;256(6):2607–2610. [PubMed] [Google Scholar]
  34. Vänänen H. K., Morris D. C., Anderson H. C. Calcification of cartilage matrix in chondrocyte cultures derived from rachitic rat growth plate cartilage. Metab Bone Dis Relat Res. 1983;5(2):87–92. doi: 10.1016/0221-8747(83)90007-3. [DOI] [PubMed] [Google Scholar]
  35. Wuthier R. E., Chin J. E., Hale J. E., Register T. C., Hale L. V., Ishikawa Y. Isolation and characterization of calcium-accumulating matrix vesicles from chondrocytes of chicken epiphyseal growth plate cartilage in primary culture. J Biol Chem. 1985 Dec 15;260(29):15972–15979. [PubMed] [Google Scholar]
  36. Wuthier R. E., Gore S. T. Partition of inorganic ions and phospholipids in isolated cell, membrane and matrix vesicle fractions: evidence for Ca-Pi-acidic phospholipid complexes. Calcif Tissue Res. 1977 Dec 28;24(2):163–171. doi: 10.1007/BF02223311. [DOI] [PubMed] [Google Scholar]
  37. Wuthier R. E. Lipid composition of isolated epiphyseal cartilage cells, membranes and matrix vesicles. Biochim Biophys Acta. 1975 Oct 21;409(1):128–143. doi: 10.1016/0005-2760(75)90087-9. [DOI] [PubMed] [Google Scholar]

Articles from The American Journal of Pathology are provided here courtesy of American Society for Investigative Pathology

RESOURCES