Abstract
It has been proposed that the skin is a functionally unique compartment of the immune system, although little direct evidence supporting this hypothesis has been presented. Here we show that lymphocyte populations at cutaneous sites can be differentiated from otherwise similar populations at noncutaneous sites by their preferential expression of an epitope defined by the MAb HECA-452. This MAb recognizes a predominantly 200-kd cell-surface glycoprotein present on about 16% of peripheral blood T cells, including both CD4+ and CD8+ T cells (17% and 11% HECA-452+, respectively), as well as TCR-delta-bearing T cells (32%+). Most thymocytes (99%) lacked HECA-452 antigen expression, and essentially all the HECA-452+ peripheral blood T cells were found in the adhesion molecule high, CD45R low putative memory cell subset, findings suggesting that HECA-452 expression develops peripherally as a consequence of antigenic stimulation. However, the HECA-452 antigen is not a conventional activation antigen because it was not upregulated with mitogen stimulation of peripheral blood T cells. Most significantly, among 54 diverse specimens of normal/reactive lymphoid tissues and sites of chronic inflammation, there was a clear association of lymphocyte HECA-452 expression and cutaneous location. In extracutaneous sites (n = 38) only about 5% of lymphocytes within the T-cell areas of these tissues expressed this antigen, whereas in inflammatory skin lesions (n = 16), 85% were HECA-452+. The association of HECA-452 expression and cutaneous location was also seen in a series of T-cell lymphomas. The malignant cells of 16 of 18 cases of epidermotropic (patch/plaque) stage mycosis fungoides were HECA-452+, as well as 2 of 7 nonmycosis fungoides peripheral T-cell lymphomas in skin. In contrast, this antigen was not expressed in thymic (lymphoblastic) lymphomas (n = 14), nonepidermotropic (tumor) stage mycosis fungoides (n = 5), and noncutaneous peripheral T-cell lymphomas (n = 15). Among lymphocytes, the preferential expression of the HECA-452 determinant by cutaneous T cells supports the hypothesis that the skin constitutes a immunologically unique lymphoid tissue and suggests that this molecule may play a role in either lymphocyte homing to skin or in lymphocyte interactions with the epidermis.
Full text
PDF















Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abel E. A. Clinical features of cutaneous T-cell lymphoma. Dermatol Clin. 1985 Oct;3(4):647–664. [PubMed] [Google Scholar]
- Bos J. D., Zonneveld I., Das P. K., Krieg S. R., van der Loos C. M., Kapsenberg M. L. The skin immune system (SIS): distribution and immunophenotype of lymphocyte subpopulations in normal human skin. J Invest Dermatol. 1987 May;88(5):569–573. doi: 10.1111/1523-1747.ep12470172. [DOI] [PubMed] [Google Scholar]
- Butcher E. C., Scollay R. G., Weissman I. L. Organ specificity of lymphocyte migration: mediation by highly selective lymphocyte interaction with organ-specific determinants on high endothelial venules. Eur J Immunol. 1980 Jul;10(7):556–561. doi: 10.1002/eji.1830100713. [DOI] [PubMed] [Google Scholar]
- Butcher E. C. The regulation of lymphocyte traffic. Curr Top Microbiol Immunol. 1986;128:85–122. doi: 10.1007/978-3-642-71272-2_3. [DOI] [PubMed] [Google Scholar]
- Cahill R. N., Poskitt D. C., Frost D. C., Trnka Z. Two distinct pools of recirculating T lymphocytes: migratory characteristics of nodal and intestinal T lymphocytes. J Exp Med. 1977 Feb 1;145(2):420–428. doi: 10.1084/jem.145.2.420. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cerf-Bensussan N., Guy-Grand D., Lisowska-Grospierre B., Griscelli C., Bhan A. K. A monoclonal antibody specific for rat intestinal lymphocytes. J Immunol. 1986 Jan;136(1):76–82. [PubMed] [Google Scholar]
- Cerf-Bensussan N., Jarry A., Brousse N., Lisowska-Grospierre B., Guy-Grand D., Griscelli C. A monoclonal antibody (HML-1) defining a novel membrane molecule present on human intestinal lymphocytes. Eur J Immunol. 1987 Sep;17(9):1279–1285. doi: 10.1002/eji.1830170910. [DOI] [PubMed] [Google Scholar]
- Craig S. W., Cebra J. J. Peyer's patches: an enriched source of precursors for IgA-producing immunocytes in the rabbit. J Exp Med. 1971 Jul 1;134(1):188–200. doi: 10.1084/jem.134.1.188. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Duijvestijn A. M., Horst E., Pals S. T., Rouse B. N., Steere A. C., Picker L. J., Meijer C. J., Butcher E. C. High endothelial differentiation in human lymphoid and inflammatory tissues defined by monoclonal antibody HECA-452. Am J Pathol. 1988 Jan;130(1):147–155. [PMC free article] [PubMed] [Google Scholar]
- Edelson R. L. Cutaneous T cell lymphoma: mycosis fungoides, Sézary syndrome, and other variants. J Am Acad Dermatol. 1980 Feb;2(2):89–106. doi: 10.1016/s0190-9622(80)80385-9. [DOI] [PubMed] [Google Scholar]
- Elson C. O., Heck J. A., Strober W. T-cell regulation of murine IgA synthesis. J Exp Med. 1979 Mar 1;149(3):632–643. doi: 10.1084/jem.149.3.632. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goding J. W. Conjugation of antibodies with fluorochromes: modifications to the standard methods. J Immunol Methods. 1976;13(3-4):215–226. doi: 10.1016/0022-1759(76)90068-5. [DOI] [PubMed] [Google Scholar]
- Goldstein L. A., Zhou D. F., Picker L. J., Minty C. N., Bargatze R. F., Ding J. F., Butcher E. C. A human lymphocyte homing receptor, the hermes antigen, is related to cartilage proteoglycan core and link proteins. Cell. 1989 Mar 24;56(6):1063–1072. doi: 10.1016/0092-8674(89)90639-9. [DOI] [PubMed] [Google Scholar]
- Gonwa T. A., Picker L. J., Raff H. V., Goyert S. M., Silver J., Stobo J. D. Antigen-presenting capabilities of human monocytes correlates with their expression of HLA-DS, an Ia determinant distinct from HLA-DR. J Immunol. 1983 Feb;130(2):706–711. [PubMed] [Google Scholar]
- Griffiths C. E., Voorhees J. J., Nickoloff B. J. Characterization of intercellular adhesion molecule-1 and HLA-DR expression in normal and inflamed skin: modulation by recombinant gamma interferon and tumor necrosis factor. J Am Acad Dermatol. 1989 Apr;20(4):617–629. doi: 10.1016/s0190-9622(89)70073-6. [DOI] [PubMed] [Google Scholar]
- Groh V., Porcelli S., Fabbi M., Lanier L. L., Picker L. J., Anderson T., Warnke R. A., Bhan A. K., Strominger J. L., Brenner M. B. Human lymphocytes bearing T cell receptor gamma/delta are phenotypically diverse and evenly distributed throughout the lymphoid system. J Exp Med. 1989 Apr 1;169(4):1277–1294. doi: 10.1084/jem.169.4.1277. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hall J. G., Hopkins J., Orlans E. Studies on the lymphocytes of sheep. III. Destination of lymph-borne immunoblasts in relation to their tissue of origin. Eur J Immunol. 1977 Jan;7(1):30–37. doi: 10.1002/eji.1830070108. [DOI] [PubMed] [Google Scholar]
- Haynes B. F., Hensley L. L., Jegasothy B. V. Phenotypic characterization of skin-infiltrating T cells in cutaneous T-cell lymphoma: comparison with benign cutaneous T-cell infiltrates. Blood. 1982 Aug;60(2):463–473. [PubMed] [Google Scholar]
- Issekutz T. B., Chin W., Hay J. B. Lymphocyte traffic through granulomas: differences in the recovery of indium-111-labeled lymphocytes in afferent and efferent lymph. Cell Immunol. 1980 Aug 15;54(1):79–86. doi: 10.1016/0008-8749(80)90191-4. [DOI] [PubMed] [Google Scholar]
- Issekutz T. B., Webster D. M., Stoltz J. M. Lymphocyte recruitment in vaccinia virus-induced cutaneous delayed-type hypersensitivity. Immunology. 1986 May;58(1):87–94. [PMC free article] [PubMed] [Google Scholar]
- Jalkanen S., Nash G. S., De los Toyos J., MacDermott R. P., Butcher E. C. Human lamina propria lymphocytes bear homing receptors and bind selectively to mucosal lymphoid high endothelium. Eur J Immunol. 1989 Jan;19(1):63–68. doi: 10.1002/eji.1830190111. [DOI] [PubMed] [Google Scholar]
- Krueger G. G., Stingl G. Immunology/inflammation of the skin--a 50-year perspective. J Invest Dermatol. 1989 Apr;92(4 Suppl):32S–51S. doi: 10.1111/1523-1747.ep13074960. [DOI] [PubMed] [Google Scholar]
- Kruse J., Mailhammer R., Wernecke H., Faissner A., Sommer I., Goridis C., Schachner M. Neural cell adhesion molecules and myelin-associated glycoprotein share a common carbohydrate moiety recognized by monoclonal antibodies L2 and HNK-1. Nature. 1984 Sep 13;311(5982):153–155. doi: 10.1038/311153a0. [DOI] [PubMed] [Google Scholar]
- Kücherer A., Faissner A., Schachner M. The novel carbohydrate epitope L3 is shared by some neural cell adhesion molecules. J Cell Biol. 1987 Jun;104(6):1597–1602. doi: 10.1083/jcb.104.6.1597. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Miller R. A., Coleman C. N., Fawcett H. D., Hoppe R. T., McDougall I. R. Sézary syndrome: a model for migration of T lymphocytes to skin. N Engl J Med. 1980 Jul 10;303(2):89–92. doi: 10.1056/NEJM198007103030206. [DOI] [PubMed] [Google Scholar]
- Nickoloff B. J., Basham T. Y., Merigan T. C., Torseth J. W., Morhenn V. B. Human keratinocyte-lymphocyte reactions in vitro. J Invest Dermatol. 1986 Jul;87(1):11–18. doi: 10.1111/1523-1747.ep12523513. [DOI] [PubMed] [Google Scholar]
- Picker L. J., Weiss L. M., Medeiros L. J., Wood G. S., Warnke R. A. Immunophenotypic criteria for the diagnosis of non-Hodgkin's lymphoma. Am J Pathol. 1987 Jul;128(1):181–201. [PMC free article] [PubMed] [Google Scholar]
- Pickford L. B., Mayer D. N., Bolin L. M., Rouse R. V. Transiently expressed, neural-specific molecule associated with premigratory granule cells in postnatal mouse cerebellum. J Neurocytol. 1989 Aug;18(4):465–478. doi: 10.1007/BF01474543. [DOI] [PubMed] [Google Scholar]
- Ralfkiaer E., Wantzin G. L., Mason D. Y., Hou-Jensen K., Stein H., Thomsen K. Phenotypic characterization of lymphocyte subsets in mycosis fungoides. Comparison with large plaque parapsoriasis and benign chronic dermatoses. Am J Clin Pathol. 1985 Nov;84(5):610–619. doi: 10.1093/ajcp/84.5.610. [DOI] [PubMed] [Google Scholar]
- Rose M. L., Parrott D. M., Bruce R. G. Migration of lymphoblasts to the small intestine. II. Divergent migration of mesenteric and peripheral immunoblasts to sites of inflammation in the mouse. Cell Immunol. 1976 Nov;27(1):36–46. doi: 10.1016/0008-8749(76)90151-9. [DOI] [PubMed] [Google Scholar]
- Sackstein R., Falanga V., Streilein J. W., Chin Y. H. Lymphocyte adhesion to psoriatic dermal endothelium is mediated by a tissue-specific receptor/ligand interaction. J Invest Dermatol. 1988 Nov;91(5):423–428. doi: 10.1111/1523-1747.ep12476441. [DOI] [PubMed] [Google Scholar]
- Sanchez-Madrid F., Krensky A. M., Ware C. F., Robbins E., Strominger J. L., Burakoff S. J., Springer T. A. Three distinct antigens associated with human T-lymphocyte-mediated cytolysis: LFA-1, LFA-2, and LFA-3. Proc Natl Acad Sci U S A. 1982 Dec;79(23):7489–7493. doi: 10.1073/pnas.79.23.7489. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sanders M. E., Makgoba M. W., Sharrow S. O., Stephany D., Springer T. A., Young H. A., Shaw S. Human memory T lymphocytes express increased levels of three cell adhesion molecules (LFA-3, CD2, and LFA-1) and three other molecules (UCHL1, CDw29, and Pgp-1) and have enhanced IFN-gamma production. J Immunol. 1988 Mar 1;140(5):1401–1407. [PubMed] [Google Scholar]
- Schmitz M., Nunez D., Butcher E. C. Selective recognition of mucosal lymphoid high endothelium by gut intraepithelial leukocytes. Gastroenterology. 1988 Mar;94(3):576–581. doi: 10.1016/0016-5085(88)90226-0. [DOI] [PubMed] [Google Scholar]
- Shiohara T., Moriya N., Mochizuki T., Nagashima M. Lichenoid tissue reaction (LTR) induced by local transfer of Ia-reactive T-cell clones. II. LTR by epidermal invasion of cytotoxic lymphokine-producing autoreactive T cells. J Invest Dermatol. 1987 Jul;89(1):8–14. [PubMed] [Google Scholar]
- Streeter P. R., Rouse B. T., Butcher E. C. Immunohistologic and functional characterization of a vascular addressin involved in lymphocyte homing into peripheral lymph nodes. J Cell Biol. 1988 Nov;107(5):1853–1862. doi: 10.1083/jcb.107.5.1853. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Streilein J. W. Skin-associated lymphoid tissues (SALT): origins and functions. J Invest Dermatol. 1983 Jun;80 (Suppl):12s–16s. doi: 10.1111/1523-1747.ep12536743. [DOI] [PubMed] [Google Scholar]
- van der Valk P., Mullink H., Huijgens P. C., Tadema T. M., Vos W., Meijer C. J. Immunohistochemistry in bone marrow diagnosis. Value of a panel of monoclonal antibodies on routinely processed bone marrow biopsies. Am J Surg Pathol. 1989 Feb;13(2):97–106. [PubMed] [Google Scholar]