Skip to main content
The American Journal of Pathology logoLink to The American Journal of Pathology
. 1990 Jan;136(1):169–179.

Characterization of Two Unique Cholesterol-Rich Lipid Particles Isolated from Human Atherosclerotic Lesions

Fei-Fei Chao, E Joan Blanchette-Mackie, Ya-Jun Chen, Benjamin F Dickens, Elliott Berlin, Lynn M Amende, Sonia I Skarlatos, Wilbert Gamble, James H Resau, Wolfgang T Mergner, Howard S Kruth
PMCID: PMC1877463  PMID: 2297045

Abstract

The authors' laboratory, using histochemicalmethods, previously identified two types of cholesterol-containing lipid particles in the extracellular spaces of human atherosclerotic lesions, one particle enriched in esterified cholesterol and the other particle enriched in unesterified cholesterol. The authors isolated and characterized these lipid particles. The esterified cholesterol-rich lipid particle was a small lipid droplet and differed from intracellular lipid dropletsfound in foam cells with respect to size and chemical composition. It had an esterified cholesterol core surrounded by aphospholipidunesterified cholesterol monolayer. Some aqueous spaces were seen within the particle core. Unesterified cholesterol-rich lipid particles were multilamellated, solid structures and vesicles comprised of single or multiple lamellas. The esterified cholesterol-rich particle had a density <1.01 g/ml, whereas the unesterified cholesterol-rich particle had a density between 1.03 and 1.05 g/ml. Both particles were similar in size fraction, whereas palmitate, stearate, oleate, and linoleate were predominant in the phospholipid fraction. The origins and the role of these two unusual lipid particles in vessel wall cholesterol metabolism remain to be determined.

Full text

PDF
169

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amanuma-Muto K., Kanaseki T., Imanaka T., Ohkuma S., Takano T. Lipid composition of low-density lysosomal membrane fraction prepared from atheromatous aorta of cholesterol-fed rabbits. Biochem Int. 1983 Jul;7(1):107–114. [PubMed] [Google Scholar]
  2. Amanuma K., Kanaseki T., Ikeuchi Y., Ohkuma S., Takano T. Studies on fine structure and location of lipids in quick-freeze replicas of atherosclerotic aorta of WHHL rabbits. Virchows Arch A Pathol Anat Histopathol. 1986;410(3):231–238. doi: 10.1007/BF00710829. [DOI] [PubMed] [Google Scholar]
  3. BARTLETT G. R. Phosphorus assay in column chromatography. J Biol Chem. 1959 Mar;234(3):466–468. [PubMed] [Google Scholar]
  4. Berlin E., Judd J. T., Marshall M. W., Kliman P. G. Dietary linoleate increases fluidity and influences chemical composition of plasma low density lipoprotein in adult men. Atherosclerosis. 1987 Aug;66(3):215–225. doi: 10.1016/0021-9150(87)90065-7. [DOI] [PubMed] [Google Scholar]
  5. Blanchette-Mackie E. J., Scow R. O. Retention of lipolytic products in chylomicrons incubated with lipoprotein lipase: electron microscope study. J Lipid Res. 1976 Jan;17(1):57–67. [PubMed] [Google Scholar]
  6. Blanchette-Mackie E. J., Scow R. O. Scanning electron microscopic study of chylomicrons incubated with lipoprotein lipase. Anat Rec. 1976 Apr;184(4):599–609. doi: 10.1002/ar.1091840402. [DOI] [PubMed] [Google Scholar]
  7. Blanchette-Mackie E. J., Scow R. O. Sites of lipoprotein lipase activity in adipose tissue perfused with chylomicrons. Electron microscope cytochemical study. J Cell Biol. 1971 Oct;51(1):1–25. doi: 10.1083/jcb.51.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bocan T. M., Schifani T. A., Guyton J. R. Ultrastructure of the human aortic fibrolipid lesion. Formation of the atherosclerotic lipid-rich core. Am J Pathol. 1986 Jun;123(3):413–424. [PMC free article] [PubMed] [Google Scholar]
  9. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  10. Chalvardjian A., Rudnicki E. Determination of lipid phosphorus in the nanomolar range. Anal Biochem. 1970 Jul;36(1):225–226. doi: 10.1016/0003-2697(70)90352-0. [DOI] [PubMed] [Google Scholar]
  11. Chao F. F., Amende L. M., Blanchette-Mackie E. J., Skarlatos S. I., Gamble W., Resau J. H., Mergner W. T., Kruth H. S. Unesterified cholesterol-rich lipid particles in atherosclerotic lesions of human and rabbit aortas. Am J Pathol. 1988 Apr;131(1):73–83. [PMC free article] [PubMed] [Google Scholar]
  12. FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
  13. Fainaru M., Mahley R. W., Hamilton R. L., Innerarity T. L. Structural and metabolic heterogeneity of beta-very low density lipoproteins from cholesterol-fed dogs and from humans with type III hyperlipoproteinemia. J Lipid Res. 1982 Jul;23(5):702–714. [PubMed] [Google Scholar]
  14. GEER J. C., McGILL H. C., Jr, STRONG J. P. The fine structure of human atherosclerotic lesions. Am J Pathol. 1961 Mar;38:263–287. [PMC free article] [PubMed] [Google Scholar]
  15. Gamble W., Vaughan M., Kruth H. S., Avigan J. Procedure for determination of free and total cholesterol in micro- or nanogram amounts suitable for studies with cultured cells. J Lipid Res. 1978 Nov;19(8):1068–1070. [PubMed] [Google Scholar]
  16. Goldstein J. L., Brown M. S. The low-density lipoprotein pathway and its relation to atherosclerosis. Annu Rev Biochem. 1977;46:897–930. doi: 10.1146/annurev.bi.46.070177.004341. [DOI] [PubMed] [Google Scholar]
  17. Guyton J. R., Klemp K. F. The lipid-rich core region of human atherosclerotic fibrous plaques. Prevalence of small lipid droplets and vesicles by electron microscopy. Am J Pathol. 1989 Mar;134(3):705–717. [PMC free article] [PubMed] [Google Scholar]
  18. Hata Y., Insull W., Jr Significance of cholesterol esters as liquid crystal in human atherosclerosis. Jpn Circ J. 1973 Mar;37(3):269–275. doi: 10.1253/jcj.37.269. [DOI] [PubMed] [Google Scholar]
  19. Hoff H. F., Bradley W. A., Heideman C. L., Gaubatz J. W., Karagas M. D., Gotto A. M., Jr Characterization of low density lipoprotein-like particle in the human aorta from grossly normal and atherosclerotic regions. Biochim Biophys Acta. 1979 May 25;573(2):361–374. doi: 10.1016/0005-2760(79)90069-9. [DOI] [PubMed] [Google Scholar]
  20. Hollander W. Unified concept on the role of acid mucopolysaccharides and connective tissue proteins in the accumulation of lipids, lipoproteins, and calcium in the atherosclerotic plaque. Exp Mol Pathol. 1976 Aug;25(1):106–120. doi: 10.1016/0014-4800(76)90021-6. [DOI] [PubMed] [Google Scholar]
  21. Insull W., Jr, Bartsch G. E. Cholesterol, triglyceride, and phospholipid content of intima, media, and atherosclerotic fatty streak in human thoracic aorta. J Clin Invest. 1966 Apr;45(4):513–523. doi: 10.1172/JCI105365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Insull W., Jr, Hata Y., Meakin J. D., Marchant L., Andrews C. W., Buzek B. Morphology of cholesteryl ester-rich inclusions in lesions of atherosclerosis in man. Atherosclerosis. 1974 May-Jun;19(3):555–560. doi: 10.1016/s0021-9150(74)80019-5. [DOI] [PubMed] [Google Scholar]
  23. KARNOVSKY M. J. Simple methods for "staining with lead" at high pH in electron microscopy. J Biophys Biochem Cytol. 1961 Dec;11:729–732. doi: 10.1083/jcb.11.3.729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kaduce T. L., Norton K. C., Spector A. A. A rapid, isocratic method for phospholipid separation by high-performance liquid chromatography. J Lipid Res. 1983 Oct;24(10):1398–1403. [PubMed] [Google Scholar]
  25. Katz S. S., Small D. M. Isolation and and partial characterization of the lipid phases of human atherosclerotic plaques. J Biol Chem. 1980 Oct 25;255(20):9753–9759. [PubMed] [Google Scholar]
  26. Kruth H. S. Filipin-positive, oil red O-negative particles in atherosclerotic lesions induced by cholesterol feeding. Lab Invest. 1984 Jan;50(1):87–93. [PubMed] [Google Scholar]
  27. Kruth H. S. Histochemical detection of esterified cholesterol within human atherosclerotic lesions using the fluorescent probe filipin. Atherosclerosis. 1984 May-Jun;51(2-3):281–292. doi: 10.1016/0021-9150(84)90175-8. [DOI] [PubMed] [Google Scholar]
  28. Kruth H. S. Localization of unesterified cholesterol in human atherosclerotic lesions. Demonstration of filipin-positive, oil-red-O-negative particles. Am J Pathol. 1984 Feb;114(2):201–208. [PMC free article] [PubMed] [Google Scholar]
  29. Kruth H. S. Subendothelial accumulation of unesterified cholesterol. An early event in atherosclerotic lesion development. Atherosclerosis. 1985 Nov;57(2-3):337–341. doi: 10.1016/0021-9150(85)90045-0. [DOI] [PubMed] [Google Scholar]
  30. LEIBOVITZ A. THE GROWTH AND MAINTENANCE OF TISSUE-CELL CULTURES IN FREE GAS EXCHANGE WITH THE ATMOSPHERE. Am J Hyg. 1963 Sep;78:173–180. doi: 10.1093/oxfordjournals.aje.a120336. [DOI] [PubMed] [Google Scholar]
  31. Lang P. D., Insull W., Jr Lipid droplets in atherosclerotic fatty streaks of human aorta. J Clin Invest. 1970 Aug;49(8):1479–1488. doi: 10.1172/JCI106365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Parthasarathy S., Steinbrecher U. P., Barnett J., Witztum J. L., Steinberg D. Essential role of phospholipase A2 activity in endothelial cell-induced modification of low density lipoprotein. Proc Natl Acad Sci U S A. 1985 May;82(9):3000–3004. doi: 10.1073/pnas.82.9.3000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Portman O. W. Arterial composition and metabolism: esterified fatty acids and cholesterol. Adv Lipid Res. 1970;8:41–114. [PubMed] [Google Scholar]
  34. Quinn M. T., Parthasarathy S., Steinberg D. Lysophosphatidylcholine: a chemotactic factor for human monocytes and its potential role in atherogenesis. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2805–2809. doi: 10.1073/pnas.85.8.2805. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Redgrave T. G., Roberts D. C., West C. E. Separation of plasma lipoproteins by density-gradient ultracentrifugation. Anal Biochem. 1975 May 12;65(1-2):42–49. doi: 10.1016/0003-2697(75)90488-1. [DOI] [PubMed] [Google Scholar]
  36. Robenek H., Schmitz G. Ca++ antagonists and ACAT inhibitors promote cholesterol efflux from macrophages by different mechanisms. II. Characterization of intracellular morphologic changes. Arteriosclerosis. 1988 Jan-Feb;8(1):57–67. doi: 10.1161/01.atv.8.1.57. [DOI] [PubMed] [Google Scholar]
  37. Rouser G., Solomon R. D. Changes in phospholipid composition of human aorta with age. Lipids. 1969 May;4(3):232–234. doi: 10.1007/BF02532637. [DOI] [PubMed] [Google Scholar]
  38. SMITH E. B. THE INFLUENCE OF AGE AND ATHEROSCLEROSIS ON THE CHEMISTRY OF AORTIC INTIMA. 1. THE LIPIDS. J Atheroscler Res. 1965 Mar-Apr;5(2):224–240. doi: 10.1016/s0368-1319(65)80064-3. [DOI] [PubMed] [Google Scholar]
  39. Schettler G. F., Lang P. D. Characteristics of lipid inclusions in early arteriosclerotic lesions of human aorta. Keio J Med. 1977 Dec;26(4):205–211. doi: 10.2302/kjm.26.205. [DOI] [PubMed] [Google Scholar]
  40. Schmitz G., Robenek H., Beuck M., Krause R., Schurek A., Niemann R. Ca++ antagonists and ACAT inhibitors promote cholesterol efflux from macrophages by different mechanisms. I. Characterization of cellular lipid metabolism. Arteriosclerosis. 1988 Jan-Feb;8(1):46–56. doi: 10.1161/01.atv.8.1.46. [DOI] [PubMed] [Google Scholar]
  41. Simionescu N., Vasile E., Lupu F., Popescu G., Simionescu M. Prelesional events in atherogenesis. Accumulation of extracellular cholesterol-rich liposomes in the arterial intima and cardiac valves of the hyperlipidemic rabbit. Am J Pathol. 1986 Apr;123(1):109–125. [PMC free article] [PubMed] [Google Scholar]
  42. Smith E. B., Evans P. H., Downham M. D. Lipid in the aortic intima. The correlation of morphological and chemical characteristics. J Atheroscler Res. 1967 Mar-Apr;7(2):171–186. doi: 10.1016/s0368-1319(67)80079-6. [DOI] [PubMed] [Google Scholar]
  43. Smith E. B., Slater R. S., Chu P. K. The lipids in raised fatty and fibrous lesions in human aorta. A comparison of the changes at different stages of development. J Atheroscler Res. 1968 May-Jun;8(3):399–419. doi: 10.1016/s0368-1319(68)80097-3. [DOI] [PubMed] [Google Scholar]
  44. Smith E. B. The relationship between plasma and tissue lipids in human atherosclerosis. Adv Lipid Res. 1974;12(0):1–49. doi: 10.1016/b978-0-12-024912-1.50008-9. [DOI] [PubMed] [Google Scholar]
  45. Steinbrecher U. P., Parthasarathy S., Leake D. S., Witztum J. L., Steinberg D. Modification of low density lipoprotein by endothelial cells involves lipid peroxidation and degradation of low density lipoprotein phospholipids. Proc Natl Acad Sci U S A. 1984 Jun;81(12):3883–3887. doi: 10.1073/pnas.81.12.3883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Woodard J. F., Srinivasan S. R., Zimny M. L., Radhakrishnamurphy B., Berenson G. S. Electron microscopic features of lipoprotein-glycosaminoglycan complexes from human atherosclerotic plaques. Lab Invest. 1976 May;34(5):516–521. [PubMed] [Google Scholar]
  47. Ylä-Herttuala S., Jaakkola O., Ehnholm C., Tikkanen M. J., Solakivi T., Särkioja T., Nikkari T. Characterization of two lipoproteins containing apolipoproteins B and E from lesion-free human aortic intima. J Lipid Res. 1988 May;29(5):563–572. [PubMed] [Google Scholar]

Articles from The American Journal of Pathology are provided here courtesy of American Society for Investigative Pathology

RESOURCES