Skip to main content
The American Journal of Pathology logoLink to The American Journal of Pathology
. 1990 Mar;136(3):585–592.

Immunohistochemical distribution of type IV collagenase in normal, benign, and malignant breast tissue.

C Monteagudo 1, M J Merino 1, J San-Juan 1, L A Liotta 1, W G Stetler-Stevenson 1
PMCID: PMC1877499  PMID: 2156430

Abstract

Production of type IV collagenase by tumor cells has been linked to their metastatic potential in several experimental models. A possible role for this enzyme in basement membrane type IV collagen turnover has also been suggested. Two recently developed affinity-purified, monospecific antibodies directed against the amino terminus (H1), or an internal active site domain (metal binding region [MBR]) of human type IV collagenase, were employed in the avidin-biotin-immunoperoxidase technique in formalin-fixed, paraffin-embedded breast tissue samples from 55 patients. Intense cytoplasmic immunostaining of myoepithelial cells was found in normal and hyperplastic tissue, and discontinuous staining was noted in intraductal carcinomas. Luminal epithelial cells were negative or weakly positive in large- or medium-sized ducts but reacted frequently in normal terminal ducts and hyperplastic lesions. Epithelial cells in intraductal carcinomas exhibited immunoreactivity in 20 of 23 cases. Invasive carcinomas were positive in 36 of 40 cases, and metastatic cells in lymph nodes stained in 10 of 12 cases. These results support a role for type IV collagenase in the basement membrane remodeling of normal breast. Our findings suggest that myoepithelial cells play a pivotal role in this enzymatic activity. The high percentage of positive cells in invasive carcinomas and the strong immunoreactivity of lymph node metastases support the role of the enzyme in tumor invasion and metastasis and suggest that tumor cells are the essential source of the enzyme in these processes.

Full text

PDF
585

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albrechtsen R., Nielsen M., Wewer U., Engvall E., Ruoslahti E. Basement membrane changes in breast cancer detected by immunohistochemical staining for laminin. Cancer Res. 1981 Dec;41(12 Pt 1):5076–5081. [PubMed] [Google Scholar]
  2. Albrechtsen R., Wewer U. M., Liotta L. A. Basement membranes in human cancer. Pathol Annu. 1986;21(Pt 2):251–276. [PubMed] [Google Scholar]
  3. Barsky S. H., Siegal G. P., Jannotta F., Liotta L. A. Loss of basement membrane components by invasive tumors but not by their benign counterparts. Lab Invest. 1983 Aug;49(2):140–147. [PubMed] [Google Scholar]
  4. Barsky S. H., Togo S., Garbisa S., Liotta L. A. Type IV collagenase immunoreactivity in invasive breast carcinoma. Lancet. 1983 Feb 5;1(8319):296–297. doi: 10.1016/s0140-6736(83)91708-7. [DOI] [PubMed] [Google Scholar]
  5. Bauer E. A., Gordon J. M., Reddick M. E., Eisen A. Z. Quantitation and immunocytochemical localization of human skin collagenase in basal cell carcinoma. J Invest Dermatol. 1977 Oct;69(4):363–367. doi: 10.1111/1523-1747.ep12510240. [DOI] [PubMed] [Google Scholar]
  6. Bauer E. A., Uitto J., Walters R. C., Eisen A. Z. Enhanced collagenase production by fibroblasts derived from human basal cell carcinomas. Cancer Res. 1979 Nov;39(11):4594–4599. [PubMed] [Google Scholar]
  7. Biswas C. Tumor cell stimulation of collagenase production by fibroblasts. Biochem Biophys Res Commun. 1982 Dec 15;109(3):1026–1034. doi: 10.1016/0006-291x(82)92042-3. [DOI] [PubMed] [Google Scholar]
  8. Charpin C., Lissitzky J. C., Jacquemier J., Lavaut M. N., Kopp F., Pourreau-Schneider N., Martin P. M., Toga M. Immunohistochemical detection of laminin in 98 human breast carcinomas: a light and electron microscopic study. Hum Pathol. 1986 Apr;17(4):355–365. doi: 10.1016/s0046-8177(86)80458-0. [DOI] [PubMed] [Google Scholar]
  9. Collier I. E., Wilhelm S. M., Eisen A. Z., Marmer B. L., Grant G. A., Seltzer J. L., Kronberger A., He C. S., Bauer E. A., Goldberg G. I. H-ras oncogene-transformed human bronchial epithelial cells (TBE-1) secrete a single metalloprotease capable of degrading basement membrane collagen. J Biol Chem. 1988 May 15;263(14):6579–6587. [PubMed] [Google Scholar]
  10. Ellis R. A. Fine structure of the myoepithelium of the eccrine sweat glands of man. J Cell Biol. 1965 Dec;27(3):551–563. doi: 10.1083/jcb.27.3.551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Garbisa S., Ballin M., Daga-Gordini D., Fastelli G., Naturale M., Negro A., Semenzato G., Liotta L. A. Transient expression of type IV collagenolytic metalloproteinase by human mononuclear phagocytes. J Biol Chem. 1986 Feb 15;261(5):2369–2375. [PubMed] [Google Scholar]
  12. Garbisa S., Pozzatti R., Muschel R. J., Saffiotti U., Ballin M., Goldfarb R. H., Khoury G., Liotta L. A. Secretion of type IV collagenolytic protease and metastatic phenotype: induction by transfection with c-Ha-ras but not c-Ha-ras plus Ad2-E1a. Cancer Res. 1987 Mar 15;47(6):1523–1528. [PubMed] [Google Scholar]
  13. Gusterson B. A., Warburton M. J., Mitchell D., Ellison M., Neville A. M., Rudland P. S. Distribution of myoepithelial cells and basement membrane proteins in the normal breast and in benign and malignant breast diseases. Cancer Res. 1982 Nov;42(11):4763–4770. [PubMed] [Google Scholar]
  14. Hamperl H. The myothelia (myoepithelial cells). Normal state; regressive changes; hyperplasia; tumors. Curr Top Pathol. 1970;53:161–220. [PubMed] [Google Scholar]
  15. Hsu S. M., Raine L., Fanger H. Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures. J Histochem Cytochem. 1981 Apr;29(4):577–580. doi: 10.1177/29.4.6166661. [DOI] [PubMed] [Google Scholar]
  16. Jarasch E. D., Nagle R. B., Kaufmann M., Maurer C., Böcker W. J. Differential diagnosis of benign epithelial proliferations and carcinomas of the breast using antibodies to cytokeratins. Hum Pathol. 1988 Mar;19(3):276–289. doi: 10.1016/s0046-8177(88)80520-3. [DOI] [PubMed] [Google Scholar]
  17. Kalebic T., Garbisa S., Glaser B., Liotta L. A. Basement membrane collagen: degradation by migrating endothelial cells. Science. 1983 Jul 15;221(4607):281–283. doi: 10.1126/science.6190230. [DOI] [PubMed] [Google Scholar]
  18. Liotta L. A., Abe S., Robey P. G., Martin G. R. Preferential digestion of basement membrane collagen by an enzyme derived from a metastatic murine tumor. Proc Natl Acad Sci U S A. 1979 May;76(5):2268–2272. doi: 10.1073/pnas.76.5.2268. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Liotta L. A. Gene products which play a role in cancer invasion and metastasis. Breast Cancer Res Treat. 1988 May;11(2):113–124. doi: 10.1007/BF01805835. [DOI] [PubMed] [Google Scholar]
  20. Liotta L. A., Rao C. N., Barsky S. H. Tumor invasion and the extracellular matrix. Lab Invest. 1983 Dec;49(6):636–649. [PubMed] [Google Scholar]
  21. Liotta L. A., Tryggvason K., Garbisa S., Hart I., Foltz C. M., Shafie S. Metastatic potential correlates with enzymatic degradation of basement membrane collagen. Nature. 1980 Mar 6;284(5751):67–68. doi: 10.1038/284067a0. [DOI] [PubMed] [Google Scholar]
  22. Liotta L. A., Tryggvason K., Garbisa S., Robey P. G., Abe S. Partial purification and characterization of a neutral protease which cleaves type IV collagen. Biochemistry. 1981 Jan 6;20(1):100–104. doi: 10.1021/bi00504a017. [DOI] [PubMed] [Google Scholar]
  23. Liotta L. A. Tumor invasion and metastases--role of the extracellular matrix: Rhoads Memorial Award lecture. Cancer Res. 1986 Jan;46(1):1–7. [PubMed] [Google Scholar]
  24. Liotta L. A. Tumor invasion and metastases: role of the basement membrane. Warner-Lambert Parke-Davis Award lecture. Am J Pathol. 1984 Dec;117(3):339–348. [PMC free article] [PubMed] [Google Scholar]
  25. Liotta L. A., Wicha M. S., Foidart J. M., Rennard S. I., Garbisa S., Kidwell W. R. Hormonal requirements for basement membrane collagen deposition by cultured rat mammary epithelium. Lab Invest. 1979 Dec;41(6):511–518. [PubMed] [Google Scholar]
  26. Martinez-Hernandez A., Fink L. M., Pierce G. B. Removal of basement membrane in the involuting breast. Lab Invest. 1976 May;34(5):455–462. [PubMed] [Google Scholar]
  27. Pauli B. U., Knudson W. Tumor invasion: a consequence of destructive and compositional matrix alterations. Hum Pathol. 1988 Jun;19(6):628–639. doi: 10.1016/s0046-8177(88)80168-0. [DOI] [PubMed] [Google Scholar]
  28. Pauli B. U., Kuettner K. E. Tumor invasion and its local regulation. Urology. 1984 Apr;23(4 Suppl):18–28. doi: 10.1016/s0090-4295(84)80063-1. [DOI] [PubMed] [Google Scholar]
  29. Salo T., Liotta L. A., Keski-Oja J., Turpeenniemi-Hujanen T., Tryggvason K. Secretion of basement membrane collagen degrading enzyme and plasminogen activator by transformed cells--role in metastasis. Int J Cancer. 1982 Nov 15;30(5):669–673. doi: 10.1002/ijc.2910300520. [DOI] [PubMed] [Google Scholar]
  30. Siegal G. P., Barsky S. H., Terranova V. P., Liotta L. A. Stages of neoplastic transformation of human breast tissue as monitored by dissolution of basement membrane components. An immunoperoxidase study. Invasion Metastasis. 1981;1(1):54–70. [PubMed] [Google Scholar]
  31. Stetler-Stevenson W. G., Krutzsch H. C., Wacher M. P., Margulies I. M., Liotta L. A. The activation of human type IV collagenase proenzyme. Sequence identification of the major conversion product following organomercurial activation. J Biol Chem. 1989 Jan 25;264(3):1353–1356. [PubMed] [Google Scholar]
  32. Timpl R., Dziadek M. Structure, development, and molecular pathology of basement membranes. Int Rev Exp Pathol. 1986;29:1–112. [PubMed] [Google Scholar]
  33. Uitto V. J., Schwartz D., Veis A. Degradation of basement-membrane collagen by neutral proteases from human leukocytes. Eur J Biochem. 1980 Apr;105(2):409–417. doi: 10.1111/j.1432-1033.1980.tb04515.x. [DOI] [PubMed] [Google Scholar]
  34. Warburton M. J., Mitchell D., Ormerod E. J., Rudland P. Distribution of myoepithelial cells and basement membrane proteins in the resting, pregnant, lactating, and involuting rat mammary gland. J Histochem Cytochem. 1982 Jul;30(7):667–676. doi: 10.1177/30.7.6179984. [DOI] [PubMed] [Google Scholar]
  35. Warburton M. J., Ormerod E. J., Monaghan P., Ferns S., Rudland P. S. Characterization of a myoepithelial cell line derived from a neonatal rat mammary gland. J Cell Biol. 1981 Dec;91(3 Pt 1):827–836. doi: 10.1083/jcb.91.3.827. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Wellings S. R., Jensen H. M., Marcum R. G. An atlas of subgross pathology of the human breast with special reference to possible precancerous lesions. J Natl Cancer Inst. 1975 Aug;55(2):231–273. [PubMed] [Google Scholar]
  37. Wicha M. S., Liotta L. A., Vonderhaar B. K., Kidwell W. R. Effects of inhibition of basement membrane collagen deposition on rat mammary gland development. Dev Biol. 1980 Dec;80(2):253–256. doi: 10.1016/0012-1606(80)90402-9. [DOI] [PubMed] [Google Scholar]
  38. Woodley D. T., Kalebec T., Banes A. J., Link W., Prunieras M., Liotta L. Adult human keratinocytes migrating over nonviable dermal collagen produce collagenolytic enzymes that degrade type I and type IV collagen. J Invest Dermatol. 1986 Apr;86(4):418–423. doi: 10.1111/1523-1747.ep12285689. [DOI] [PubMed] [Google Scholar]
  39. Woolley D. E. Collagenolytic mechanisms in tumor cell invasion. Cancer Metastasis Rev. 1984;3(4):361–372. doi: 10.1007/BF00051460. [DOI] [PubMed] [Google Scholar]
  40. Woolley D. E., Glanville R. W., Roberts D. R., Evanson J. M. Purification, characterization and inhibition of human skin collagenase. Biochem J. 1978 Feb 1;169(2):265–276. doi: 10.1042/bj1690265. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The American Journal of Pathology are provided here courtesy of American Society for Investigative Pathology

RESOURCES