Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1993 Apr;37(4):785–788. doi: 10.1128/aac.37.4.785

Two mechanisms of butenafine action in Candida albicans.

W Iwatani 1, T Arika 1, H Yamaguchi 1
PMCID: PMC187760  PMID: 8494375

Abstract

The mechanism of action of a new benzylamine antimycotic, butenafine hydrochloride, was studied in Candida albicans by using the thiocarbamate antimycotic tolnaftate as a reference drug. Butenafine completely inhibited the growth of a test strain of C. albicans at 25 micrograms/ml and was cidal at 50 micrograms/ml. Tolnaftate did not show any growth-inhibitory activity up to 100 micrograms/ml. Both butenafine and tolnaftate inhibited squalene epoxidation in C. albicans, with 50% inhibitory concentrations being 0.57 and 0.17 microgram/ml, respectively. Butenafine, but not tolnaftate, induced the release of appreciable amounts of Pi from C. albicans cells at 12.5 micrograms/ml. This effect of butenafine was augmented when the cells were pretreated with tolnaftate. The results suggest that the direct membrane-damaging effect of butenafine may play a major role in its anticandidal activity and that the drug-induced alteration in the cellular sterol composition renders the cell membrane more susceptible to the membrane-damaging effect of this drug.

Full text

PDF
785

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arika T., Hase T., Yokoo M. Anti-Trichophyton mentagrophytes activity and percutaneous permeation of butenafine in guinea pigs. Antimicrob Agents Chemother. 1993 Feb;37(2):363–365. doi: 10.1128/aac.37.2.363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arika T., Yokoo M., Hase T., Maeda T., Amemiya K., Yamaguchi H. Effects of butenafine hydrochloride, a new benzylamine derivative, on experimental dermatophytosis in guinea pigs. Antimicrob Agents Chemother. 1990 Nov;34(11):2250–2253. doi: 10.1128/aac.34.11.2250. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Arika T., Yokoo M., Maeda T., Amemiya K., Yamaguchi H. Effects of butenafine hydrochloride, a new benzylamine derivative, on experimental tinea pedis in guinea pigs. Antimicrob Agents Chemother. 1990 Nov;34(11):2254–2255. doi: 10.1128/aac.34.11.2254. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Barrett-Bee K. J., Lane A. C., Turner R. W. The mode of antifungal action of tolnaftate. J Med Vet Mycol. 1986 Apr;24(2):155–160. doi: 10.1080/02681218680000221. [DOI] [PubMed] [Google Scholar]
  5. Fryberg M., Oehlschlager A. C., Unrau A. M. Biosynthesis of ergosterol in yeast. Evidence for multiple pathways. J Am Chem Soc. 1973 Aug 22;95(17):5747–5757. doi: 10.1021/ja00798a051. [DOI] [PubMed] [Google Scholar]
  6. KLEIN H. P. Synthesis of lipids in resting cells of Saccharomyces cerevisiae. J Bacteriol. 1955 Jun;69(6):620–627. doi: 10.1128/jb.69.6.620-627.1955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Maeda T., Takase M., Ishibashi A., Yamamoto T., Sasaki K., Arika T., Yokoo M., Amemiya K. [Synthesis and antifungal activity of butenafine hydrochloride (KP-363), a new benzylamine antifungal agent]. Yakugaku Zasshi. 1991 Feb;111(2):126–137. doi: 10.1248/yakushi1947.111.2_126. [DOI] [PubMed] [Google Scholar]
  8. Morita T., Nozawa Y. Effects of antifungal agents on ergosterol biosynthesis in Candida albicans and Trichophyton mentagrophytes: differential inhibitory sites of naphthiomate and miconazole. J Invest Dermatol. 1985 Nov;85(5):434–437. doi: 10.1111/1523-1747.ep12277141. [DOI] [PubMed] [Google Scholar]
  9. Petranyi G., Ryder N. S., Stütz A. Allylamine derivatives: new class of synthetic antifungal agents inhibiting fungal squalene epoxidase. Science. 1984 Jun 15;224(4654):1239–1241. doi: 10.1126/science.6547247. [DOI] [PubMed] [Google Scholar]
  10. Ryder N. S., Dupont M. C. Inhibition of squalene epoxidase by allylamine antimycotic compounds. A comparative study of the fungal and mammalian enzymes. Biochem J. 1985 Sep 15;230(3):765–770. doi: 10.1042/bj2300765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ryder N. S., Frank I., Dupont M. C. Ergosterol biosynthesis inhibition by the thiocarbamate antifungal agents tolnaftate and tolciclate. Antimicrob Agents Chemother. 1986 May;29(5):858–860. doi: 10.1128/aac.29.5.858. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ryder N. S., Seidl G., Troke P. F. Effect of the antimycotic drug naftifine on growth of and sterol biosynthesis in Candida albicans. Antimicrob Agents Chemother. 1984 Apr;25(4):483–487. doi: 10.1128/aac.25.4.483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ryder N. S. Specific inhibition of fungal sterol biosynthesis by SF 86-327, a new allylamine antimycotic agent. Antimicrob Agents Chemother. 1985 Feb;27(2):252–256. doi: 10.1128/aac.27.2.252. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES