Skip to main content
The American Journal of Pathology logoLink to The American Journal of Pathology
. 1990 Apr;136(4):891–897.

Phototoxic damage to sebaceous glands and hair follicles of mice after systemic administration of 5-aminolevulinic acid correlates with localized protoporphyrin IX fluorescence.

D X Divaris 1, J C Kennedy 1, R H Pottier 1
PMCID: PMC1877631  PMID: 2327473

Abstract

The skin of albino mice given 5-aminolevulinic acid (ALA) by intraperitoneal injection rapidly developed the characteristic red fluorescence of protoporphyrin IX. Fluorescence microscopy of frozen tissue sections revealed intense red fluorescence within the sebaceous glands and a much weaker fluorescence within the epidermis and hair follicles. Little or no fluorescence was detected in the dermis, blood vessels, or cartilage of the ear. Light microscopy of skin taken at intervals after whole-body exposure of ALA-injected mice to photoactivating light revealed destruction of sebaceous cells, focal epidermal necrosis with a transient acute inflammation, and diffuse reactive changes in the keratinocytes. The dermis showed transient secondary edema and inflammation. The location and severity of the phototoxic damage correlated well with the location and intensity of the red fluorescence. The light-exposed skin appeared to recover completely except for a persistent reduction in the number of hair follicles.

Full text

PDF
891

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BERLIN N. I., NEUBERGER A., SCOTT J. J. The metabolism of delta -aminolaevulic acid. 1. Normal pathways, studied with the aid of 15N. Biochem J. 1956 Sep;64(1):80–90. doi: 10.1042/bj0640080. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BERLIN N. I., NEUBERGER A., SCOTT J. J. The metabolism of delta -aminolaevulic acid. 2. Normal pathways, studied with the aid of 14C. Biochem J. 1956 Sep;64(1):90–100. doi: 10.1042/bj0640090. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Balchum O. J., Profio A. E., Razum N. Ratioing fluorometer probe for localizing carcinoma in situ in bronchi of the lung. Photochem Photobiol. 1987 Nov;46(5):887–891. doi: 10.1111/j.1751-1097.1987.tb04864.x. [DOI] [PubMed] [Google Scholar]
  4. Baumgartner R., Fisslinger H., Jocham D., Lenz H., Ruprecht L., Stepp H., Unsöld E. A fluorescence imaging device for endoscopic detection of early stage cancer--instrumental and experimental studies. Photochem Photobiol. 1987 Nov;46(5):759–763. doi: 10.1111/j.1751-1097.1987.tb04844.x. [DOI] [PubMed] [Google Scholar]
  5. Kilian M. A rapid method for the differentiation of Haemophilus strains. The porphyrin test;. Acta Pathol Microbiol Scand B Microbiol Immunol. 1974 Dec;82(6):835–842. doi: 10.1111/j.1699-0463.1974.tb02381.x. [DOI] [PubMed] [Google Scholar]
  6. Manyak M. J., Russo A., Smith P. D., Glatstein E. Photodynamic therapy. J Clin Oncol. 1988 Feb;6(2):380–391. doi: 10.1200/JCO.1988.6.2.380. [DOI] [PubMed] [Google Scholar]
  7. Muller P. J., Wilson B. C. Photodynamic therapy of malignant primary brain tumours: clinical effects, post-operative ICP, and light penetration of the brain. Photochem Photobiol. 1987 Nov;46(5):929–935. doi: 10.1111/j.1751-1097.1987.tb04871.x. [DOI] [PubMed] [Google Scholar]
  8. Pottier R. H., Chow Y. F., LaPlante J. P., Truscott T. G., Kennedy J. C., Beiner L. A. Non-invasive technique for obtaining fluorescence excitation and emission spectra in vivo. Photochem Photobiol. 1986 Nov;44(5):679–687. doi: 10.1111/j.1751-1097.1986.tb04726.x. [DOI] [PubMed] [Google Scholar]
  9. Prout G. R., Jr, Lin C. W., Benson R., Jr, Nseyo U. O., Daly J. J., Griffin P. P., Kinsey J., Tian M. E., Lao Y. H., Mian Y. Z. Photodynamic therapy with hematoporphyrin derivative in the treatment of superficial transitional-cell carcinoma of the bladder. N Engl J Med. 1987 Nov 12;317(20):1251–1255. doi: 10.1056/NEJM198711123172003. [DOI] [PubMed] [Google Scholar]
  10. Sima A. A., Kennedy J. C., Blakeslee D., Robertson D. M. Experimental porphyric neuropathy: a preliminary report. Can J Neurol Sci. 1981 May;8(2):105–113. doi: 10.1017/s0317167100042992. [DOI] [PubMed] [Google Scholar]
  11. Weagle G., Paterson P. E., Kennedy J., Pottier R. The nature of the chromophore responsible for naturally occurring fluorescence in mouse skin. J Photochem Photobiol B. 1988 Nov;2(3):313–320. doi: 10.1016/1011-1344(88)85051-6. [DOI] [PubMed] [Google Scholar]

Articles from The American Journal of Pathology are provided here courtesy of American Society for Investigative Pathology

RESOURCES