Skip to main content
The American Journal of Pathology logoLink to The American Journal of Pathology
. 1990 Nov;137(5):1083–1090.

Monocrotaline-induced angiogenesis. Differences in the bronchial and pulmonary vasculature.

D E Schraufnagel 1
PMCID: PMC1877663  PMID: 1700616

Abstract

Vascular corrosion casting was used to search for angiogenesis in the blood vessels of the lungs of rats given monocrotaline. Animals treated with monocrotaline had new well-differentiated arteries and veins on their pleural surfaces. Animals not treated had no large vessel on their pleural surfaces. Animals receiving monocrotaline had capillaries around major arteries that were more dense, widened, and less tubular than normal. These capillaries occasionally occurred in sheets and had blind endings. The control animals had delicate, uniform, tubular capillaries. Alveolar capillaries in both groups showed no evidence of increase in size or number or change in shape. Light microscopy confirmed the finding of new vessels found with the casts. The finding of angiogenesis on the pleural surface and in the bronchovascular bundle, but not in the alveolar capillaries, suggests a basic difference in how these capillary beds respond to angiogenic stimuli. If alveolar capillaries are unable to undergo angiogenesis, concepts of lung development and tumor growth may be significantly altered. The lung may be a unique organ to study angiogenesis because of the different angiogenic potential of its two circulations. Study of these differences may lead to better understanding of inhibition of angiogenesis.

Full text

PDF
1083

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brody J. S., Vaccaro C. A., Gill P. J., Silbert J. E. Alterations in alveolar basement membranes during postnatal lung growth. J Cell Biol. 1982 Nov;95(2 Pt 1):394–402. doi: 10.1083/jcb.95.2.394. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Castenholz A., Zöltzer H., Erhardt H. Structures imitating myocytes and pericytes in corrosion casts of terminal blood vessels. A methodical approach to the phenomenon of "plastic strips" in SEM. Mikroskopie. 1982 May;39(3-4):95–106. [PubMed] [Google Scholar]
  3. Deffebach M. E., Charan N. B., Lakshminarayan S., Butler J. The bronchial circulation. Small, but a vital attribute of the lung. Am Rev Respir Dis. 1987 Feb;135(2):463–481. doi: 10.1164/arrd.1987.135.2.463. [DOI] [PubMed] [Google Scholar]
  4. Dvorak H. F., Nagy J. A., Dvorak J. T., Dvorak A. M. Identification and characterization of the blood vessels of solid tumors that are leaky to circulating macromolecules. Am J Pathol. 1988 Oct;133(1):95–109. [PMC free article] [PubMed] [Google Scholar]
  5. Folkman J. How is blood vessel growth regulated in normal and neoplastic tissue? G.H.A. Clowes memorial Award lecture. Cancer Res. 1986 Feb;46(2):467–473. [PubMed] [Google Scholar]
  6. Folkman J. Regulation of angiogenesis: a new function of heparin. Biochem Pharmacol. 1985 Apr 1;34(7):905–909. doi: 10.1016/0006-2952(85)90588-x. [DOI] [PubMed] [Google Scholar]
  7. Furcht L. T. Critical factors controlling angiogenesis: cell products, cell matrix, and growth factors. Lab Invest. 1986 Nov;55(5):505–509. [PubMed] [Google Scholar]
  8. Gillespie M. N., Rippetoe P. E., Haven C. A., Shiao R. T., Orlinska U., Maley B. E., Olson J. W. Polyamines and epidermal growth factor in monocrotaline-induced pulmonary hypertension. Am Rev Respir Dis. 1989 Nov;140(5):1463–1466. doi: 10.1164/ajrccm/140.5.1463. [DOI] [PubMed] [Google Scholar]
  9. Hislop A., Reid L. Arterial changes in Crotalaria spectabilis-induced pulmonary hypertension in rats. Br J Exp Pathol. 1974 Apr;55(2):153–163. [PMC free article] [PubMed] [Google Scholar]
  10. Kay J. M., Gillund T. D., Heath D. Mast cells in the lungs of rats fed on Crotalaria spectabilis seeds. Am J Pathol. 1967 Dec;51(6):1031–1044. [PMC free article] [PubMed] [Google Scholar]
  11. Kay J. M., Harris P., Heath D. Pulmonary hypertension produced in rats by ingestion of Crotalaria spectabilis seeds. Thorax. 1967 Mar;22(2):176–179. doi: 10.1136/thx.22.2.176. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. McLaughlin R. F., Jr Bronchial artery distribution in various mammals and in humans. Am Rev Respir Dis. 1983 Aug;128(2 Pt 2):S57–S58. doi: 10.1164/arrd.1983.128.2P2.S57. [DOI] [PubMed] [Google Scholar]
  13. Meyrick B. O., Reid L. M. Crotalaria-induced pulmonary hypertension. Uptake of 3H-thymidine by the cells of the pulmonary circulation and alveolar walls. Am J Pathol. 1982 Jan;106(1):84–94. [PMC free article] [PubMed] [Google Scholar]
  14. Olson J. W., Altiere R. J., Gillespie M. N. Prolonged activation of rat lung ornithine decarboxylase in monocrotaline-induced pulmonary hypertension. Biochem Pharmacol. 1984 Nov 15;33(22):3633–3637. doi: 10.1016/0006-2952(84)90149-7. [DOI] [PubMed] [Google Scholar]
  15. Olson J. W., Atkinson J. E., Hacker A. D., Altiere R. J., Gillespie M. N. Suppression of polyamine biosynthesis prevents monocrotaline-induced pulmonary edema and arterial medial thickening. Toxicol Appl Pharmacol. 1985 Oct;81(1):91–99. doi: 10.1016/0041-008x(85)90124-3. [DOI] [PubMed] [Google Scholar]
  16. Olson J. W., Hacker A. D., Altiere R. J., Gillespie M. N. Polyamines and the development of monocrotaline-induced pulmonary hypertension. Am J Physiol. 1984 Oct;247(4 Pt 2):H682–H685. doi: 10.1152/ajpheart.1984.247.4.H682. [DOI] [PubMed] [Google Scholar]
  17. Schraufnagel D. E., Mehta D., Harshbarger R., Treviranus K., Wang N. S. Capillary remodeling in bleomycin-induced pulmonary fibrosis. Am J Pathol. 1986 Oct;125(1):97–106. [PMC free article] [PubMed] [Google Scholar]
  18. Schraufnagel D. E. Microvascular casting of the lung: bronchial versus pulmonary artery filling. Scanning Microsc. 1989 Jun;3(2):575–578. [PubMed] [Google Scholar]
  19. Schraufnagel D. E. Microvascular corrosion casting of the lung. A state-of-the-art review. Scanning Microsc. 1987 Dec;1(4):1733–1747. [PubMed] [Google Scholar]
  20. Schraufnagel D. E., Schmid A. Pulmonary capillary density in rats given monocrotaline. A cast corrosion study. Am Rev Respir Dis. 1989 Nov;140(5):1405–1409. doi: 10.1164/ajrccm/140.5.1405. [DOI] [PubMed] [Google Scholar]
  21. Shing Y., Folkman J., Sullivan R., Butterfield C., Murray J., Klagsbrun M. Heparin affinity: purification of a tumor-derived capillary endothelial cell growth factor. Science. 1984 Mar 23;223(4642):1296–1299. doi: 10.1126/science.6199844. [DOI] [PubMed] [Google Scholar]
  22. TURNER-WARWICK M. PRECAPILLARY SYSTEMIC-PULMONARY ANASTOMOSES. Thorax. 1963 Sep;18:225–237. doi: 10.1136/thx.18.3.225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Tsao M. S., Schraufnagel D., Wang N. S. Pathogenesis of pulmonary infarction. Am J Med. 1982 Apr;72(4):599–606. doi: 10.1016/0002-9343(82)90458-2. [DOI] [PubMed] [Google Scholar]
  24. West D. C., Kumar S. Elastase activity in capillary and aortic endothelial cells. Anticancer Res. 1986 Sep-Oct;6(5):1069–1072. [PubMed] [Google Scholar]
  25. Wilson D. W., Segall H. J., Pan L. C., Dunston S. K. Progressive inflammatory and structural changes in the pulmonary vasculature of monocrotaline-treated rats. Microvasc Res. 1989 Jul;38(1):57–80. doi: 10.1016/0026-2862(89)90017-4. [DOI] [PubMed] [Google Scholar]

Articles from The American Journal of Pathology are provided here courtesy of American Society for Investigative Pathology

RESOURCES