Skip to main content
The American Journal of Pathology logoLink to The American Journal of Pathology
. 1990 Jul;137(1):7–12.

Influence of the angiotensin system on endothelial and smooth muscle cell migration.

L Bell 1, J A Madri 1
PMCID: PMC1877705  PMID: 2164777

Abstract

The blood vessel wall's response to injury is an important determinant of luminal size and vessel function. The physiologic migration of endothelial cells from the edges of a wound and the pathophysiologic migration of medial smooth muscle cells into the intima are two important components of the vessel wall's response to injury. The influence of the angiotensin system on endothelial and smooth muscle cell migration have not been examined. In the present study, the influence of angiotensin system components on bovine aortic endothelial cell (BAEC) and bovine aortic smooth muscle cell (BASMC) migration after release of cultured cell monolayers from contact inhibition was determined. The angiotensin-converting enzyme (ACE) inhibitor lisinopril increased BAEC migration 41% +/- 3% (P less than 0.001), as did the specific angiotensin II antagonist sar1, ile8-angiotensin II (SAR) (41% +/- 3% (P less than 0.001). Exogenous angiotensin I and angiotensin II did not affect BAEC migration. Exogenous angiotensin II abolished the effect of lisinopril on BAEC migration. Lisinopril increased cell-associated u-plasminogen activator (u-PA) 23% +/- 3% (P less than 0.001) in migrating BAEC and angiotensin II abolished this increase. SAR increased u-PA 33% +/- 0% (P less than 0.001). In contrast, these agents had the opposite effect on smooth muscle cells. Angiotensin II increased smooth muscle cell migration 40% +/- 3% (P less than 0.001), and this effect was abolished by SAR. Angiotensin II also increased cell-associated u-PA 83% +/- 7% (P less than 0.001) in migrating BASMC. The increase in BAEC migration with inhibition of endothelial cell angiotensin II stimulation, either with lisinopril or SAR, also was associated with an increase in cell-associated u-PA. These results indicate that lisinopril interrupts an autocrine pathway in endothelial cells, in which endothelial cell-derived angiotensin I is converted to angiotensin II by ACE, and imply that angiotensin-converting enzyme inhibitors in vivo would act to reduce vessel wall injury by directly increasing the rate of endothelial cell wound closure; by increasing the antithrombotic tendency of the endothelium via enhanced u-PA; and indirectly, by decreasing production of angiotensin II and thereby the rate of smooth muscle cell migration into the intima.

Full text

PDF
7

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Basson C. T., Knowles W. J., Bell L., Albelda S. M., Castronovo V., Liotta L. A., Madri J. A. Spatiotemporal segregation of endothelial cell integrin and nonintegrin extracellular matrix-binding proteins during adhesion events. J Cell Biol. 1990 Mar;110(3):789–801. doi: 10.1083/jcb.110.3.789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bell L., Madri J. A. Effect of platelet factors on migration of cultured bovine aortic endothelial and smooth muscle cells. Circ Res. 1989 Oct;65(4):1057–1065. doi: 10.1161/01.res.65.4.1057. [DOI] [PubMed] [Google Scholar]
  3. Caldwell P. R., Seegal B. C., Hsu K. C., Das M., Soffer R. L. Angiotensin-converting enzyme: vascular endothelial localization. Science. 1976 Mar 12;191(4231):1050–1051. doi: 10.1126/science.175444. [DOI] [PubMed] [Google Scholar]
  4. Campbell-Boswell M., Robertson A. L., Jr Effects of angiotensin II and vasopressin on human smooth muscle cells in vitro. Exp Mol Pathol. 1981 Oct;35(2):265–276. doi: 10.1016/0014-4800(81)90066-6. [DOI] [PubMed] [Google Scholar]
  5. Campbell D. J. Circulating and tissue angiotensin systems. J Clin Invest. 1987 Jan;79(1):1–6. doi: 10.1172/JCI112768. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Campbell D. J., Habener J. F. Cellular localization of angiotensinogen gene expression in brown adipose tissue and mesentery: quantification of messenger ribonucleic acid abundance using hybridization in situ. Endocrinology. 1987 Nov;121(5):1616–1626. doi: 10.1210/endo-121-5-1616. [DOI] [PubMed] [Google Scholar]
  7. Cassis L. A., Lynch K. R., Peach M. J. Localization of angiotensinogen messenger RNA in rat aorta. Circ Res. 1988 Jun;62(6):1259–1262. doi: 10.1161/01.res.62.6.1259. [DOI] [PubMed] [Google Scholar]
  8. Daniel T. O., Fen Z. Distinct pathways mediate transcriptional regulation of platelet-derived growth factor B/c-sis expression. J Biol Chem. 1988 Dec 25;263(36):19815–19820. [PubMed] [Google Scholar]
  9. Deutsch D. G., Mertz E. T. Plasminogen: purification from human plasma by affinity chromatography. Science. 1970 Dec 4;170(3962):1095–1096. doi: 10.1126/science.170.3962.1095. [DOI] [PubMed] [Google Scholar]
  10. Geisterfer A. A., Peach M. J., Owens G. K. Angiotensin II induces hypertrophy, not hyperplasia, of cultured rat aortic smooth muscle cells. Circ Res. 1988 Apr;62(4):749–756. doi: 10.1161/01.res.62.4.749. [DOI] [PubMed] [Google Scholar]
  11. Gotlieb A. I., Spector W., Wong M. K., Lacey C. In vitro reendothelialization. Microfilament bundle reorganization in migrating porcine endothelial cells. Arteriosclerosis. 1984 Mar-Apr;4(2):91–96. doi: 10.1161/01.atv.4.2.91. [DOI] [PubMed] [Google Scholar]
  12. Grotendorst G. R., Chang T., Seppä H. E., Kleinman H. K., Martin G. R. Platelet-derived growth factor is a chemoattractant for vascular smooth muscle cells. J Cell Physiol. 1982 Nov;113(2):261–266. doi: 10.1002/jcp.1041130213. [DOI] [PubMed] [Google Scholar]
  13. Johnson A. R., Erdös E. G. Metabolism of vasoactive peptides by human endothelial cells in culture. Angiotensin I converting enzyme (kininase II) and angiotensinase. J Clin Invest. 1977 Apr;59(4):684–695. doi: 10.1172/JCI108687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Libby P., Ordovas J. M., Auger K. R., Robbins A. H., Birinyi L. K., Dinarello C. A. Endotoxin and tumor necrosis factor induce interleukin-1 gene expression in adult human vascular endothelial cells. Am J Pathol. 1986 Aug;124(2):179–185. [PMC free article] [PubMed] [Google Scholar]
  15. Libby P., Ordovas J. M., Birinyi L. K., Auger K. R., Dinarello C. A. Inducible interleukin-1 gene expression in human vascular smooth muscle cells. J Clin Invest. 1986 Dec;78(6):1432–1438. doi: 10.1172/JCI112732. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lilly L. S., Pratt R. E., Alexander R. W., Larson D. M., Ellison K. E., Gimbrone M. A., Jr, Dzau V. J. Renin expression by vascular endothelial cells in culture. Circ Res. 1985 Aug;57(2):312–318. doi: 10.1161/01.res.57.2.312. [DOI] [PubMed] [Google Scholar]
  17. Liotta L. A., Mandler R., Murano G., Katz D. A., Gordon R. K., Chiang P. K., Schiffmann E. Tumor cell autocrine motility factor. Proc Natl Acad Sci U S A. 1986 May;83(10):3302–3306. doi: 10.1073/pnas.83.10.3302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Madri J. A., Dreyer B., Pitlick F. A., Furthmayr H. The collagenous components of the subendothelium. Correlation of structure and function. Lab Invest. 1980 Oct;43(4):303–315. [PubMed] [Google Scholar]
  19. Madri J. A., Pratt B. M., Yannariello-Brown J. Matrix-driven cell size change modulates aortic endothelial cell proliferation and sheet migration. Am J Pathol. 1988 Jul;132(1):18–27. [PMC free article] [PubMed] [Google Scholar]
  20. Naftilan A. J., Pratt R. E., Dzau V. J. Induction of platelet-derived growth factor A-chain and c-myc gene expressions by angiotensin II in cultured rat vascular smooth muscle cells. J Clin Invest. 1989 Apr;83(4):1419–1424. doi: 10.1172/JCI114032. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Owens G. K. Influence of blood pressure on development of aortic medial smooth muscle hypertrophy in spontaneously hypertensive rats. Hypertension. 1987 Feb;9(2):178–187. doi: 10.1161/01.hyp.9.2.178. [DOI] [PubMed] [Google Scholar]
  22. Paglin S., Stukenbrok H., Joyce N. C., Jamieson J. D. Interaction of angiotensin II with functional smooth muscle cells in culture. Am J Physiol. 1987 Dec;253(6 Pt 1):C872–C882. doi: 10.1152/ajpcell.1987.253.6.C872. [DOI] [PubMed] [Google Scholar]
  23. Patel J. M., Yarid F. R., Block E. R., Raizada M. K. Angiotensin receptors in pulmonary arterial and aortic endothelial cells. Am J Physiol. 1989 May;256(5 Pt 1):C987–C993. doi: 10.1152/ajpcell.1989.256.5.C987. [DOI] [PubMed] [Google Scholar]
  24. Powell J. S., Clozel J. P., Müller R. K., Kuhn H., Hefti F., Hosang M., Baumgartner H. R. Inhibitors of angiotensin-converting enzyme prevent myointimal proliferation after vascular injury. Science. 1989 Jul 14;245(4914):186–188. doi: 10.1126/science.2526370. [DOI] [PubMed] [Google Scholar]
  25. Quigley J. P., Gold L. I., Schwimmer R., Sullivan L. M. Limited cleavage of cellular fibronectin by plasminogen activator purified from transformed cells. Proc Natl Acad Sci U S A. 1987 May;84(9):2776–2780. doi: 10.1073/pnas.84.9.2776. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Re R., Fallon J. T., Dzau V., Quay S. C., Haber E. Renin synthesis by canine aortic smooth muscle cells in culture. Life Sci. 1982 Jan 4;30(1):99–106. doi: 10.1016/0024-3205(82)90641-5. [DOI] [PubMed] [Google Scholar]
  27. Reidy M. A., Schwartz S. M. Endothelial regeneration. III. Time course of intimal changes after small defined injury to rat aortic endothelium. Lab Invest. 1981 Apr;44(4):301–308. [PubMed] [Google Scholar]
  28. Ross R. The pathogenesis of atherosclerosis--an update. N Engl J Med. 1986 Feb 20;314(8):488–500. doi: 10.1056/NEJM198602203140806. [DOI] [PubMed] [Google Scholar]
  29. Ryan U. S., Ryan J. W., Whitaker C., Chiu A. Localization of angiotensin converting enzyme (kininase II). II. Immunocytochemistry and immunofluorescence. Tissue Cell. 1976;8(1):125–145. doi: 10.1016/0040-8166(76)90025-2. [DOI] [PubMed] [Google Scholar]
  30. Saye J. A., Singer H. A., Peach M. J. Role of endothelium in conversion of angiotensin I to angiotensin II in rabbit aorta. Hypertension. 1984 Mar-Apr;6(2 Pt 1):216–221. [PubMed] [Google Scholar]
  31. Schwartz S. M., Haudenschild C. C., Eddy E. M. Endothelial regneration. I. Quantitative analysis of initial stages of endothelial regeneration in rat aortic intima. Lab Invest. 1978 May;38(5):568–580. [PubMed] [Google Scholar]
  32. Smith P. K., Krohn R. I., Hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., Fujimoto E. K., Goeke N. M., Olson B. J., Klenk D. C. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985 Oct;150(1):76–85. doi: 10.1016/0003-2697(85)90442-7. [DOI] [PubMed] [Google Scholar]
  33. Tsuda T., Griendling K. K., Alexander R. W. Angiotensin II stimulates vimentin phosphorylation via a Ca2+-dependent, protein kinase C-independent mechanism in cultured vascular smooth muscle cells. J Biol Chem. 1988 Dec 25;263(36):19758–19763. [PubMed] [Google Scholar]
  34. Warner S. J., Libby P. Human vascular smooth muscle cells. Target for and source of tumor necrosis factor. J Immunol. 1989 Jan 1;142(1):100–109. [PubMed] [Google Scholar]
  35. Werb Z., Mainardi C. L., Vater C. A., Harris E. D., Jr Endogenous activiation of latent collagenase by rheumatoid synovial cells. Evidence for a role of plasminogen activator. N Engl J Med. 1977 May 5;296(18):1017–1023. doi: 10.1056/NEJM197705052961801. [DOI] [PubMed] [Google Scholar]
  36. Yannariello-Brown J., Wewer U., Liotta L., Madri J. A. Distribution of a 69-kD laminin-binding protein in aortic and microvascular endothelial cells: modulation during cell attachment, spreading, and migration. J Cell Biol. 1988 May;106(5):1773–1786. doi: 10.1083/jcb.106.5.1773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Yannariello-Brown J., Wewer U., Liotta L., Madri J. A. Distribution of a 69-kD laminin-binding protein in aortic and microvascular endothelial cells: modulation during cell attachment, spreading, and migration. J Cell Biol. 1988 May;106(5):1773–1786. doi: 10.1083/jcb.106.5.1773. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The American Journal of Pathology are provided here courtesy of American Society for Investigative Pathology

RESOURCES