Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1993 Apr;37(4):911–913. doi: 10.1128/aac.37.4.911

In vitro activities of new macrolides and rifapentine against Brucella spp.

J A García-Rodríguez 1, J L Muñoz Bellido 1, M J Fresnadillo 1, I Trujillano 1
PMCID: PMC187812  PMID: 8494391

Abstract

We have tested the in vitro activities of streptomycin, rifampin, tetracyclines, trimethoprim-sulfamethoxazole, erythromycin, four new macrolides (roxithromycin, azithromycin, clarithromycin, and dirithromycin), and rifapentine against 62 strains of Brucella spp. Azithromycin and clarithromycin were, respectively, eight- and twofold more active than erythromycins (MIC for 90% of strains = 2, 8, and 16 micrograms/ml, respectively). The activity of rifapentine was similar to that of rifampin (MIC for 90% of strains = 1 microgram/ml).

Full text

PDF
911

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ariza J., Gudiol F., Pallarés R., Rufí G., Fernández-Viladrich P. Comparative trial of rifampin-doxycycline versus tetracycline-streptomycin in the therapy of human brucellosis. Antimicrob Agents Chemother. 1985 Oct;28(4):548–551. doi: 10.1128/aac.28.4.548. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cisneros J. M., Viciana P., Colmenero J., Pachón J., Martinez C., Alarcón A. Multicenter prospective study of treatment of Brucella melitensis brucellosis with doxycycline for 6 weeks plus streptomycin for 2 weeks. Antimicrob Agents Chemother. 1990 May;34(5):881–883. doi: 10.1128/aac.34.5.881. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Colmenero Castillo J. D., Hernandez Marquez S., Reguera Iglesias J. M., Cabrera Franquelo F., Rius Diaz F., Alonso A. Comparative trial of doxycycline plus streptomycin versus doxycycline plus rifampin for the therapy of human brucellosis. Chemotherapy. 1989;35(2):146–152. doi: 10.1159/000238662. [DOI] [PubMed] [Google Scholar]
  4. Easmon C. S., Crane J. P., Blowers A. Effect of ciprofloxacin on intracellular organisms: in-vitro and in-vivo studies. J Antimicrob Chemother. 1986 Nov;18 (Suppl 500):43–48. doi: 10.1093/jac/18.supplement_d.43. [DOI] [PubMed] [Google Scholar]
  5. García-Rodriguez J. A., García Sánchez J. E., Trujillano I. Lack of effective bactericidal activity of new quinolones against Brucella spp. Antimicrob Agents Chemother. 1991 Apr;35(4):756–759. doi: 10.1128/aac.35.4.756. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. García-Rodriguez J. A., García-Sánchez J. E., Muñoz Bellido J. L., Ortiz de la Tabla V., Bellido Barbero J. Review of pulmonary brucellosis: a case report on brucellar pulmonary empyema. Diagn Microbiol Infect Dis. 1988 Sep;11(1):53–60. doi: 10.1016/0732-8893(88)90073-9. [DOI] [PubMed] [Google Scholar]
  7. Gladue R. P., Snider M. E. Intracellular accumulation of azithromycin by cultured human fibroblasts. Antimicrob Agents Chemother. 1990 Jun;34(6):1056–1060. doi: 10.1128/aac.34.6.1056. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Heifets L. B., Lindholm-Levy P. J., Flory M. A. Bactericidal activity in vitro of various rifamycins against Mycobacterium avium and Mycobacterium tuberculosis. Am Rev Respir Dis. 1990 Mar;141(3):626–630. doi: 10.1164/ajrccm/141.3.626. [DOI] [PubMed] [Google Scholar]
  9. Kirst H. A., Sides G. D. New directions for macrolide antibiotics: pharmacokinetics and clinical efficacy. Antimicrob Agents Chemother. 1989 Sep;33(9):1419–1422. doi: 10.1128/aac.33.9.1419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kirst H. A., Sides G. D. New directions for macrolide antibiotics: structural modifications and in vitro activity. Antimicrob Agents Chemother. 1989 Sep;33(9):1413–1418. doi: 10.1128/aac.33.9.1413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Klemens S. P., Cynamon M. H. Activity of rifapentine against Mycobacterium avium infection in beige mice. J Antimicrob Chemother. 1992 May;29(5):555–561. doi: 10.1093/jac/29.5.555. [DOI] [PubMed] [Google Scholar]
  12. Landínez R., Liñares J., Loza E., Martínez-Beltrán J., Martín R., Baquero F. In vitro activity of azithromycin and tetracycline against 358 clinical isolates of Brucella melitensis. Eur J Clin Microbiol Infect Dis. 1992 Mar;11(3):265–267. doi: 10.1007/BF02098096. [DOI] [PubMed] [Google Scholar]
  13. Llorens-Terol J., Busquets R. M. Brucellosis treated with rifampicin. Arch Dis Child. 1980 Jun;55(6):486–488. doi: 10.1136/adc.55.6.486. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lode H. The pharmacokinetics of azithromycin and their clinical significance. Eur J Clin Microbiol Infect Dis. 1991 Oct;10(10):807–812. doi: 10.1007/BF01975832. [DOI] [PubMed] [Google Scholar]
  15. McDonald P. J., Pruul H. Phagocyte uptake and transport of azithromycin. Eur J Clin Microbiol Infect Dis. 1991 Oct;10(10):828–833. doi: 10.1007/BF01975835. [DOI] [PubMed] [Google Scholar]
  16. Pascual A., Tsukayama D., Kovarik J., Gekker G., Peterson P. Uptake and activity of rifapentine in human peritoneal macrophages and polymorphonuclear leukocytes. Eur J Clin Microbiol. 1987 Apr;6(2):152–157. doi: 10.1007/BF02018197. [DOI] [PubMed] [Google Scholar]
  17. Shasha B., Lang R., Rubinstein E. Therapy of experimental murine brucellosis with streptomycin, co-trimoxazole, ciprofloxacin, ofloxacin, pefloxacin, doxycycline, and rifampin. Antimicrob Agents Chemother. 1992 May;36(5):973–976. doi: 10.1128/aac.36.5.973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Varaldo P. E., Debbia E., Schito G. C. In vitro activities of rifapentine and rifampin, alone and in combination with six other antibiotics, against methicillin-susceptible and methicillin-resistant staphylococci of different species. Antimicrob Agents Chemother. 1985 Apr;27(4):615–618. doi: 10.1128/aac.27.4.615. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES