Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1993 May;37(5):1061–1064. doi: 10.1128/aac.37.5.1061

Resistance to cefoperazone-sulbactam in Klebsiella pneumoniae: evidence for enhanced resistance resulting from the coexistence of two different resistance mechanisms.

L B Rice 1, L L Carias 1, L Etter 1, D M Shlaes 1
PMCID: PMC187897  PMID: 8390809

Abstract

We investigated the in vitro activity and the in vivo efficacy of the beta-lactam-beta-lactamase inhibitor combination cefoperazone-sulbactam against an isogenic series of Klebsiella pneumoniae strains. Both cefoperazone and cefoperazone-sulbactam were active in vitro against a susceptible clinical strain, and the combination was highly effective in the treatment of rat intra-abdominal abscesses. Loss of expression of a 39-kDa outer membrane protein resulted in at least a fourfold increase in the MICs of cefoperazone and cefoperazone-sulbactam but did not appreciably affect the in vivo efficacy of either regimen. Introduction of plasmid RP4, which encodes the TEM-2 beta-lactamase, into the susceptible strain resulted in the loss of in vitro activity and in vivo efficacy for cefoperazone. The in vitro activity of cefoperazone-sulbactam against this strain was diminished, but the antibiotic combination remained highly active in vivo. Introduction of RP4 into the strain lacking the 39-kDa outer membrane protein resulted in a fourfold increase in the in vitro MIC of cefoperazone-sulbactam in comparison with the beta-lactamase-producing susceptible strain and resulted in a loss of in vivo efficacy against infections caused by this strain. These results suggest that the combination of different resistance mechanisms, neither of which alone results in substantially diminished cefoperazone-sulbactam efficacy in vivo, can cause in vivo resistance to the beta-lactam-beta-lactamase inhibitor combination in K. pneumoniae.

Full text

PDF
1061

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bawdon R. E., Madsen P. O. High-pressure liquid chromatographic assay of sulbactam in plasma, urine, and tissue. Antimicrob Agents Chemother. 1986 Aug;30(2):231–233. doi: 10.1128/aac.30.2.231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bonomo R. A., Currie-McCumber C., Shlaes D. M. OHIO-1 beta-lactamase resistant to mechanism-based inactivators. FEMS Microbiol Lett. 1992 Apr 1;71(1):79–82. doi: 10.1016/0378-1097(92)90545-y. [DOI] [PubMed] [Google Scholar]
  3. Boyer H. W., Roulland-Dussoix D. A complementation analysis of the restriction and modification of DNA in Escherichia coli. J Mol Biol. 1969 May 14;41(3):459–472. doi: 10.1016/0022-2836(69)90288-5. [DOI] [PubMed] [Google Scholar]
  4. Gutmann L., Williamson R., Moreau N., Kitzis M. D., Collatz E., Acar J. F., Goldstein F. W. Cross-resistance to nalidixic acid, trimethoprim, and chloramphenicol associated with alterations in outer membrane proteins of Klebsiella, Enterobacter, and Serratia. J Infect Dis. 1985 Mar;151(3):501–507. doi: 10.1093/infdis/151.3.501. [DOI] [PubMed] [Google Scholar]
  5. Hiraoka M., Okamoto R., Inoue M., Mitsuhashi S. Effects of beta-lactamases and omp mutation on susceptibility to beta-lactam antibiotics in Escherichia coli. Antimicrob Agents Chemother. 1989 Mar;33(3):382–386. doi: 10.1128/aac.33.3.382. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  7. Lowbury E. J., Lilly H. A., Kidson A., Ayliffe G. A., Jones R. J. Sensitivity of Pseudomonas aeruginosa to antibiotics: emergence of strains highly resistant to carbenicillin. Lancet. 1969 Aug 30;2(7618):448–452. doi: 10.1016/s0140-6736(69)90163-9. [DOI] [PubMed] [Google Scholar]
  8. Martinez J. L., Cercenado E., Rodriguez-Creixems M., Vincente-Perez M. F., Delgado-Iribarren A., Baquero F. Resistance to beta-lactam/clavulanate. Lancet. 1987 Dec 19;2(8573):1473–1473. doi: 10.1016/s0140-6736(87)91180-9. [DOI] [PubMed] [Google Scholar]
  9. Pangon B., Bizet C., Buré A., Pichon F., Philippon A., Regnier B., Gutmann L. In vivo selection of a cephamycin-resistant, porin-deficient mutant of Klebsiella pneumoniae producing a TEM-3 beta-lactamase. J Infect Dis. 1989 May;159(5):1005–1006. doi: 10.1093/infdis/159.5.1005. [DOI] [PubMed] [Google Scholar]
  10. Rice L. B., Carias L. L., Shlaes D. M. Efficacy of ampicillin-sulbactam versus that of cefoxitin for treatment of Escherichia coli infections in a rat intra-abdominal abscess model. Antimicrob Agents Chemother. 1993 Mar;37(3):610–612. doi: 10.1128/aac.37.3.610. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Rice L. B., Yao J. D., Klimm K., Eliopoulos G. M., Moellering R. C., Jr Efficacy of different beta-lactams against an extended-spectrum beta-lactamase-producing Klebsiella pneumoniae strain in the rat intra-abdominal abscess model. Antimicrob Agents Chemother. 1991 Jun;35(6):1243–1244. doi: 10.1128/aac.35.6.1243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Sanders C. C. Chromosomal cephalosporinases responsible for multiple resistance to newer beta-lactam antibiotics. Annu Rev Microbiol. 1987;41:573–593. doi: 10.1146/annurev.mi.41.100187.003041. [DOI] [PubMed] [Google Scholar]
  13. Sanders C. C., Iaconis J. P., Bodey G. P., Samonis G. Resistance to ticarcillin-potassium clavulanate among clinical isolates of the family Enterobacteriaceae: role of PSE-1 beta-lactamase and high levels of TEM-1 and SHV-1 and problems with false susceptibility in disk diffusion tests. Antimicrob Agents Chemother. 1988 Sep;32(9):1365–1369. doi: 10.1128/aac.32.9.1365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Shlaes D. M., Currie-McCumber C., Hull A., Behlau I., Kron M. OHIO-1 beta-lactamase is part of the SHV-1 family. Antimicrob Agents Chemother. 1990 Aug;34(8):1570–1576. doi: 10.1128/aac.34.8.1570. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Weber D. A., Sanders C. C., Bakken J. S., Quinn J. P. A novel chromosomal TEM derivative and alterations in outer membrane proteins together mediate selective ceftazidime resistance in Escherichia coli. J Infect Dis. 1990 Aug;162(2):460–465. doi: 10.1093/infdis/162.2.460. [DOI] [PubMed] [Google Scholar]
  16. Williams H., King A., Shannon K., Phillips I. Amoxycillin/clavulanate resistant Escherichia coli. Lancet. 1988 Feb 6;1(8580):304–305. doi: 10.1016/s0140-6736(88)90391-1. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES