Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1993 May;37(5):1065–1072. doi: 10.1128/aac.37.5.1065

Development of a population pharmacokinetic model and optimal sampling strategies for intravenous ciprofloxacin.

A Forrest 1, C H Ballow 1, D E Nix 1, M C Birmingham 1, J J Schentag 1
PMCID: PMC187899  PMID: 8517693

Abstract

Data obtained from 74 acutely ill patients treated in two clinical efficacy trials were used to develop a population model of the pharmacokinetics of intravenous (i.v.) ciprofloxacin. Dosage regimens ranged between 200 mg every 12 h and 400 mg every 8 h. Plasma samples (2 to 19 per patient; mean +/- standard deviation = 7 +/- 5) were obtained and assayed (by high-performance liquid chromatography) for ciprofloxacin. These data and patient covariates were modelled by iterative two-stage analysis, an approach which generates pharmacokinetic parameter values for both the population and each individual patient. The final model was used to implement a maximum a posteriori-Bayesian pharmacokinetic parameter value estimator. Optimal sampling theory was used to determine the best (maximally informative) two-, three-, four-, five-, and six-sample study designs (e.g., optimal sampling strategy 2 [OSS2] was the two-sample strategy) for identifying a patient's pharmacokinetic parameter values. These OSSs and the population model were evaluated by selecting the relatively rich data sets, those with 7 to 10 samples obtained in a single dose interval (n = 29), and comparing the parameter estimates (obtained by the maximum a posteriori-Bayesian estimator) based on each of the OSSs with those obtained by fitting all of the available data from each patient. Distributional clearance and apparent volumes were significantly related to body size (e.g., weight in kilograms or body surface area in meters squared); plasma clearance (CLT in liters per hour) was related to body size and renal function (creatinine clearance [CLCR] in milliliters per minute per 1.73 m2) by the equation CLT = (0.00145.CLCR + 0.167).weight. However, only 30% of the variance in CLT was explained by this relationship, and no other patient covariates were significant. Compared with previously published data, this target population had smaller distribution volumes (by 30%; P < 0.01) and CLT (by 44%; P < 0.001) than weight- and CLCR- matched stable volunteers. OSSs provided parameter estimates that showed good to excellent estimates of CLT (or area under the concentrations-time curve [AUC]) were unbiased and precise (e.g., r2 for AUC for all data versus AUC for OSS2 was > 0.99) and concentration-time profiles were accurately reconstructed. These results will be used to model the pharmacodynamic relationships between ciprofloxacin exposure and response and to aid in developing algorithms for individual optimization of ciprofloxacin dosage regimens.

Full text

PDF
1065

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barriere S. L., Ely E., Kapusnik J. E., Gambertoglio J. G. Analysis of a new method for assessing activity of combinations of antimicrobials: area under the bactericidal activity curve. J Antimicrob Chemother. 1985 Jul;16(1):49–59. doi: 10.1093/jac/16.1.49. [DOI] [PubMed] [Google Scholar]
  2. D'Argenio D. Z. Optimal sampling times for pharmacokinetic experiments. J Pharmacokinet Biopharm. 1981 Dec;9(6):739–756. doi: 10.1007/BF01070904. [DOI] [PubMed] [Google Scholar]
  3. D'Argenio D. Z., Schumitzky A. A program package for simulation and parameter estimation in pharmacokinetic systems. Comput Programs Biomed. 1979 Mar;9(2):115–134. doi: 10.1016/0010-468x(79)90025-4. [DOI] [PubMed] [Google Scholar]
  4. Drusano G. L., Forrest A., Snyder M. J., Reed M. D., Blumer J. L. An evaluation of optimal sampling strategy and adaptive study design. Clin Pharmacol Ther. 1988 Aug;44(2):232–238. doi: 10.1038/clpt.1988.142. [DOI] [PubMed] [Google Scholar]
  5. Drusano G. L., Plaisance K. I., Forrest A., Standiford H. C. Dose ranging study and constant infusion evaluation of ciprofloxacin. Antimicrob Agents Chemother. 1986 Sep;30(3):440–443. doi: 10.1128/aac.30.3.440. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Drusano G. L., Ryan P. A., Standiford H. C., Moody M. R., Schimpff S. C. Integration of selected pharmacologic and microbiologic properties of three new beta-lactam antibiotics: a hypothesis for rational comparison. Rev Infect Dis. 1984 May-Jun;6(3):357–363. doi: 10.1093/clinids/6.3.357. [DOI] [PubMed] [Google Scholar]
  7. Drusano G. L., Weir M., Forrest A., Plaisance K., Emm T., Standiford H. C. Pharmacokinetics of intravenously administered ciprofloxacin in patients with various degrees of renal function. Antimicrob Agents Chemother. 1987 Jun;31(6):860–864. doi: 10.1128/aac.31.6.860. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fabre D., Bressolle F., Gomeni R., Arich C., Lemesle F., Beziau H., Galtier M. Steady-state pharmacokinetics of ciprofloxacin in plasma from patients with nosocomial pneumonia: penetration of the bronchial mucosa. Antimicrob Agents Chemother. 1991 Dec;35(12):2521–2525. doi: 10.1128/aac.35.12.2521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Forrest A., Nix D. E., Ballow C. H., Goss T. F., Birmingham M. C., Schentag J. J. Pharmacodynamics of intravenous ciprofloxacin in seriously ill patients. Antimicrob Agents Chemother. 1993 May;37(5):1073–1081. doi: 10.1128/aac.37.5.1073. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gonzalez M. A., Moranchel A. H., Duran S., Pichardo A., Magana J. L., Painter B., Forrest A., Drusano G. L. Multiple-dose pharmacokinetics of ciprofloxacin administered intravenously to normal volunteers. Antimicrob Agents Chemother. 1985 Aug;28(2):235–239. doi: 10.1128/aac.28.2.235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Guay D. R., Awni W. M., Peterson P. K., Obaid S., Breitenbucher R., Matzke G. R. Pharmacokinetics of ciprofloxacin in acutely ill and convalescent elderly patients. Am J Med. 1987 Apr 27;82(4A):124–129. [PubMed] [Google Scholar]
  12. Hirata C. A., Guay D. R., Awni W. M., Stein D. J., Peterson P. K. Steady-state pharmacokinetics of intravenous and oral ciprofloxacin in elderly patients. Antimicrob Agents Chemother. 1989 Nov;33(11):1927–1931. doi: 10.1128/aac.33.11.1927. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. LeBel M., Barbeau G., Bergeron M. G., Roy D., Vallée F. Pharmacokinetics of ciprofloxacin in elderly subjects. Pharmacotherapy. 1986 Mar-Apr;6(2):87–91. doi: 10.1002/j.1875-9114.1986.tb03458.x. [DOI] [PubMed] [Google Scholar]
  14. LeBel M., Bergeron M. G., Vallée F., Fiset C., Chassé G., Bigonesse P., Rivard G. Pharmacokinetics and pharmacodynamics of ciprofloxacin in cystic fibrosis patients. Antimicrob Agents Chemother. 1986 Aug;30(2):260–266. doi: 10.1128/aac.30.2.260. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Nix D. E., De Vito J. M., Schentag J. J. Liquid-chromatographic determination of ciprofloxacin in serum and urine. Clin Chem. 1985 May;31(5):684–686. [PubMed] [Google Scholar]
  16. Nix D. E., Spivey J. M., Norman A., Schentag J. J. Dose-ranging pharmacokinetic study of ciprofloxacin after 200-, 300-, and 400-mg intravenous doses. Ann Pharmacother. 1992 Jan;26(1):8–10. doi: 10.1177/106002809202600101. [DOI] [PubMed] [Google Scholar]
  17. Peloquin C. A., Cumbo T. J., Nix D. E., Sands M. F., Schentag J. J. Evaluation of intravenous ciprofloxacin in patients with nosocomial lower respiratory tract infections. Impact of plasma concentrations, organism, minimum inhibitory concentration, and clinical condition on bacterial eradication. Arch Intern Med. 1989 Oct;149(10):2269–2273. [PubMed] [Google Scholar]
  18. Schentag J. J., Nix D. E., Adelman M. H. Mathematical examination of dual individualization principles (I): Relationships between AUC above MIC and area under the inhibitory curve for cefmenoxime, ciprofloxacin, and tobramycin. DICP. 1991 Oct;25(10):1050–1057. doi: 10.1177/106002809102501003. [DOI] [PubMed] [Google Scholar]
  19. Sheiner L. B., Beal S. L. Some suggestions for measuring predictive performance. J Pharmacokinet Biopharm. 1981 Aug;9(4):503–512. doi: 10.1007/BF01060893. [DOI] [PubMed] [Google Scholar]
  20. Sheiner L. B. The population approach to pharmacokinetic data analysis: rationale and standard data analysis methods. Drug Metab Rev. 1984;15(1-2):153–171. doi: 10.3109/03602538409015063. [DOI] [PubMed] [Google Scholar]
  21. Steimer J. L., Mallet A., Golmard J. L., Boisvieux J. F. Alternative approaches to estimation of population pharmacokinetic parameters: comparison with the nonlinear mixed-effect model. Drug Metab Rev. 1984;15(1-2):265–292. doi: 10.3109/03602538409015066. [DOI] [PubMed] [Google Scholar]
  22. Webb D. B., Roberts D. E., Williams J. D., Asscher A. W. Pharmacokinetics of ciprofloxacin in healthy volunteers and patients with impaired kidney function. J Antimicrob Chemother. 1986 Nov;18 (Suppl 500):83–87. doi: 10.1093/jac/18.supplement_d.83. [DOI] [PubMed] [Google Scholar]
  23. Yuen G. J., Drusano G. L., Forrest A., Plaisance K., Caplan E. S. Prospective use of optimal sampling theory: steady-state ciprofloxacin pharmacokinetics in critically ill trauma patients. Clin Pharmacol Ther. 1989 Oct;46(4):451–457. doi: 10.1038/clpt.1989.164. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES