Abstract
The distribution of fluconazole in tissue of human volunteers was determined by positron emission tomographic scanning over a 2-h period following the infusion of a tracer dose of 18F-fluconazole (5 to 7 mCi) plus 400 mg of unlabeled drug (the standard daily dose of fluconazole). Previous studies have validated this approach for animals. From serial positron emission tomographic imaging and blood sampling, pharmacokinetics of fluconazole in tissue were determined. There was significant distribution of the radiolabeled drug in all organs studied, with nearly constant levels achieved by 1 h. Plateau concentrations of fluconazole in key organs (micrograms per gram) included the following: whole brain, 4.92 +/- 0.17; heart, 6.98 +/- 0.20; lung, 7.81 +/- 0.46; liver, 12.94 +/- 0.24; spleen, 22.96 +/- 2.5; kidney, 11.23 +/- 0.61; prostate, 8.24 +/- 0.58; and blood, 3.76 +/- 0.30. Since levels of fluconazole of > 6 micrograms/g are needed to treat infection with most strains of Candida and levels of > 10 micrograms/g are needed for Cryptococcus neoformans, Coccidioides immitis, and Histoplasma capsulatum, the following predictions can be made. The current standard dose of 400 mg/day should be more than adequate in the treatment of urinary tract and hepatosplenic candidiasis but problematic in the treatment of candidal osteomyelitis, even with the higher levels that develop after multiple doses. Similarly, higher doses should be considered, particularly in immunocompromised patients, with infection with C. neoformans, H. capsulatum, and C. immitis that involves the central nervous and musculoskeletal systems.
Full text
PDF







Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anaissie E., Bodey G. P., Kantarjian H., David C., Barnett K., Bow E., Defelice R., Downs N., File T., Karam G. Fluconazole therapy for chronic disseminated candidiasis in patients with leukemia and prior amphotericin B therapy. Am J Med. 1991 Aug;91(2):142–150. doi: 10.1016/0002-9343(91)90006-j. [DOI] [PubMed] [Google Scholar]
- Arndt C. A., Walsh T. J., McCully C. L., Balis F. M., Pizzo P. A., Poplack D. G. Fluconazole penetration into cerebrospinal fluid: implications for treating fungal infections of the central nervous system. J Infect Dis. 1988 Jan;157(1):178–180. doi: 10.1093/infdis/157.1.178. [DOI] [PubMed] [Google Scholar]
- Berry A. J., Rinaldi M. G., Graybill J. R. Use of high-dose fluconazole as salvage therapy for cryptococcal meningitis in patients with AIDS. Antimicrob Agents Chemother. 1992 Mar;36(3):690–692. doi: 10.1128/aac.36.3.690. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Conti D. J., Tolkoff-Rubin N. E., Baker G. P., Jr, Doran M., Cosimi A. B., Delmonico F., Auchincloss H., Jr, Russell P. S., Rubin R. H. Successful treatment of invasive fungal infection with fluconazole in organ transplant recipients. Transplantation. 1989 Oct;48(4):692–695. [PubMed] [Google Scholar]
- Debruyne D., Ryckelynck J. P., Bigot M. C., Moulin M. Determination of fluconazole in biological fluids by capillary column gas chromatography with a nitrogen detector. J Pharm Sci. 1988 Jun;77(6):534–535. doi: 10.1002/jps.2600770615. [DOI] [PubMed] [Google Scholar]
- Ebden P., Neill P., Farrow P. R. Sputum levels of fluconazole in humans. Antimicrob Agents Chemother. 1989 Jun;33(6):963–964. doi: 10.1128/aac.33.6.963. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FOWLER J. F., YOUNG A. E. The average density of healthy lung. Am J Roentgenol Radium Ther Nucl Med. 1959 Feb;81(2):312–315. [PubMed] [Google Scholar]
- Fischman A. J., Alpert N. M., Livni E., Ray S., Sinclair I., Elmaleh D. R., Weiss S., Correia J. A., Webb D., Liss R. Pharmacokinetics of 18F-labeled fluconazole in rabbits with candidal infections studied with positron emission tomography. J Pharmacol Exp Ther. 1991 Dec;259(3):1351–1359. [PubMed] [Google Scholar]
- Foulds G., Brennan D. R., Wajszczuk C., Catanzaro A., Garg D. C., Knopf W., Rinaldi M., Weidler D. J. Fluconazole penetration into cerebrospinal fluid in humans. J Clin Pharmacol. 1988 Apr;28(4):363–366. doi: 10.1002/j.1552-4604.1988.tb03159.x. [DOI] [PubMed] [Google Scholar]
- Foulds G., Wajszczuk C., Weidler D. J., Garg D. J., Gibson P. Steady state parenteral kinetics of fluconazole in man. Ann N Y Acad Sci. 1988;544:427–430. doi: 10.1111/j.1749-6632.1988.tb40440.x. [DOI] [PubMed] [Google Scholar]
- Hughes C. E., Bennett R. L., Tuna I. C., Beggs W. H. Activities of fluconazole (UK 49,858) and ketoconazole against ketoconazole-susceptible and -resistant Candida albicans. Antimicrob Agents Chemother. 1988 Feb;32(2):209–212. doi: 10.1128/aac.32.2.209. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Humphrey M. J., Jevons S., Tarbit M. H. Pharmacokinetic evaluation of UK-49,858, a metabolically stable triazole antifungal drug, in animals and humans. Antimicrob Agents Chemother. 1985 Nov;28(5):648–653. doi: 10.1128/aac.28.5.648. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kauffman C. A., Bradley S. F., Ross S. C., Weber D. R. Hepatosplenic candidiasis: successful treatment with fluconazole. Am J Med. 1991 Aug;91(2):137–141. doi: 10.1016/0002-9343(91)90005-i. [DOI] [PubMed] [Google Scholar]
- Larsen R. A. Azoles and AIDS. J Infect Dis. 1990 Sep;162(3):727–730. doi: 10.1093/infdis/162.3.727. [DOI] [PubMed] [Google Scholar]
- Larsen R. A., Leal M. A., Chan L. S. Fluconazole compared with amphotericin B plus flucytosine for cryptococcal meningitis in AIDS. A randomized trial. Ann Intern Med. 1990 Aug 1;113(3):183–187. doi: 10.7326/0003-4819-113-3-183. [DOI] [PubMed] [Google Scholar]
- Livni E., Fischman A. J., Ray S., Sinclair I., Elmaleh D. R., Alpert N. M., Weiss S., Correia J. A., Webb D., Dahl R. Synthesis of 18F-labeled fluconazole and positron emission tomography studies in rabbits. Int J Rad Appl Instrum B. 1992 Feb;19(2):191–199. doi: 10.1016/0883-2897(92)90007-l. [DOI] [PubMed] [Google Scholar]
- Powderly W. G., Saag M. S., Cloud G. A., Robinson P., Meyer R. D., Jacobson J. M., Graybill J. R., Sugar A. M., McAuliffe V. J., Follansbee S. E. A controlled trial of fluconazole or amphotericin B to prevent relapse of cryptococcal meningitis in patients with the acquired immunodeficiency syndrome. The NIAID AIDS Clinical Trials Group and Mycoses Study Group. N Engl J Med. 1992 Mar 19;326(12):793–798. doi: 10.1056/NEJM199203193261203. [DOI] [PubMed] [Google Scholar]
- Richardson K., Cooper K., Marriott M. S., Tarbit M. H., Troke P. F., Whittle P. J. Design and evaluation of a systemically active agent, fluconazole. Ann N Y Acad Sci. 1988;544:4–11. doi: 10.1111/j.1749-6632.1988.tb40385.x. [DOI] [PubMed] [Google Scholar]
- Richardson K. The discovery and profile of fluconazole. J Chemother. 1990 Feb;2(1):51–54. doi: 10.1080/1120009x.1990.11738981. [DOI] [PubMed] [Google Scholar]
- Rogers T. E., Galgiani J. N. Activity of fluconazole (UK 49,858) and ketoconazole against Candida albicans in vitro and in vivo. Antimicrob Agents Chemother. 1986 Sep;30(3):418–422. doi: 10.1128/aac.30.3.418. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rota Kops E., Herzog H., Schmid A., Holte S., Feinendegen L. E. Performance characteristics of an eight-ring whole body PET scanner. J Comput Assist Tomogr. 1990 May-Jun;14(3):437–445. doi: 10.1097/00004728-199005000-00022. [DOI] [PubMed] [Google Scholar]
- Saag M. S., Dismukes W. E. Azole antifungal agents: emphasis on new triazoles. Antimicrob Agents Chemother. 1988 Jan;32(1):1–8. doi: 10.1128/aac.32.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saag M. S., Powderly W. G., Cloud G. A., Robinson P., Grieco M. H., Sharkey P. K., Thompson S. E., Sugar A. M., Tuazon C. U., Fisher J. F. Comparison of amphotericin B with fluconazole in the treatment of acute AIDS-associated cryptococcal meningitis. The NIAID Mycoses Study Group and the AIDS Clinical Trials Group. N Engl J Med. 1992 Jan 9;326(2):83–89. doi: 10.1056/NEJM199201093260202. [DOI] [PubMed] [Google Scholar]
- Van Cauteren H., Lampo A., Vandenberghe J., Vanparys P., Coussement W., De Coster R., Marsboom R. Toxicological profile and safety evaluation of antifungal azole derivatives. Mycoses. 1989;32 (Suppl 1):60–66. doi: 10.1111/j.1439-0507.1989.tb02295.x. [DOI] [PubMed] [Google Scholar]
- Van den Bossche H., Willemsens G., Cools W., Cornelissen F., Lauwers W. F., van Cutsem J. M. In vitro and in vivo effects of the antimycotic drug ketoconazole on sterol synthesis. Antimicrob Agents Chemother. 1980 Jun;17(6):922–928. doi: 10.1128/aac.17.6.922. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Van den Bossche H., Willemsens G., Cools W., Marichal P., Lauwers W. Hypothesis on the molecular basis of the antifungal activity of N-substituted imidazoles and triazoles. Biochem Soc Trans. 1983 Dec;11(6):665–667. doi: 10.1042/bst0110665. [DOI] [PubMed] [Google Scholar]
- Vanden Bossche H. Biochemical targets for antifungal azole derivatives: hypothesis on the mode of action. Curr Top Med Mycol. 1985;1:313–351. doi: 10.1007/978-1-4613-9547-8_12. [DOI] [PubMed] [Google Scholar]
- Walsh T. J., Foulds G., Pizzo P. A. Pharmacokinetics and tissue penetration of fluconazole in rabbits. Antimicrob Agents Chemother. 1989 Apr;33(4):467–469. doi: 10.1128/aac.33.4.467. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Watson P. F., Rose M. E., Ellis S. W., England H., Kelly S. L. Defective sterol C5-6 desaturation and azole resistance: a new hypothesis for the mode of action of azole antifungals. Biochem Biophys Res Commun. 1989 Nov 15;164(3):1170–1175. doi: 10.1016/0006-291x(89)91792-0. [DOI] [PubMed] [Google Scholar]