Abstract
The mechanism whereby cardiotoxic doses of isoproterenol (ISO) induces early permeability alteration of the sarcolemmal membrane is unknown; both beta-receptor overstimulation and direct toxic effect of ISO oxidation products have been implicated. There has been no morphologic observation, furthermore, on the structural basis of permeability alteration during this process. The purpose of the present study was to compare the morphology of cardiocyte injury induced by ISO and oxidized ISO (ISO-O2) and to visualize perturbation of the sarcolemma correlating with the leaky membrane. The authors studied the left ventricular myocardium of rats 10 and 60 minutes after subcutaneous administration of 85 mg/kg ISO and isolated perfused rat hearts exposed for 10 minutes either to ISO or ISO-O2 in a dose of 100 mg/l (10(-4) M) to determine the permeability of the sarcolemmal membrane using the extracellular diffusion tracer horseradish peroxidase (HRP) by light and thin section electron microscopy, the morphology of the sarcolemmal membrane by means of freeze-fracture electron microscopy, and the density of intramembrane particles (IMP) in the sarcolemmal membrane by planimetry using freeze-fracture electron microscopy. In in vivo rat hearts both 10 and 60 minutes after ISO and in vitro (isolated perfused) rat hearts exposed to either ISO or ISO-O2 for 10 minutes, HRP labeled the sarcoplasm of focally located cardiocytes implicating leakiness of the sarcolemmal membrane. HRP positive cardiocytes (with the exception of the in vivo 10 minute group) showed characteristic features of contraction band necrosis (both on light and thin-section electron microscopy) in all groups. Freeze-fracture electron microscopy of sarcolemmal protoplasmic (P) membrane faces revealed two populations of cardiocytes in all groups. P-membrane faces in one population of cardiocytes appeared as in the control. In the other population of cardiocytes, P-membrane faces showed irregular tears. Planimetry demonstrated a significant decrease of IMP numerical densities in P-membrane faces with tears in the in vivo 10 minute group and both with or without tears in the in vivo 60 minutes group and the in vitro groups compared with the control values. Furthermore, with the exception of the 10 minute in vivo group, IMP densities significantly decreased in sarcolemmal membranes with tears compared with those without tears in all experimental groups. These observations are consistent with the view that catecholamine induced myocardial injury is, at least partly, related to the direct toxic effect of catecholamine oxidation products on the sarcolemmal membrane.(ABSTRACT TRUNCATED AT 400 WORDS)
Full text
PDF














Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ashraf M. Correlative studies on sarcolemmal ultrastructure, permeability, and loss of intracellular enzymes in the isolated heart perfused with calcium-free medium. Am J Pathol. 1979 Nov;97(2):411–432. [PMC free article] [PubMed] [Google Scholar]
- Ashraf M., Halverson C. A. Structural changes in the freeze-fractured sarcolemma of ischemic myocardium. Am J Pathol. 1977 Sep;88(3):583–594. [PMC free article] [PubMed] [Google Scholar]
- Baroldi G. Different types of myocardial necrosis in coronary heart disease: a pathophysiologic review of their functional significance. Am Heart J. 1975 Jun;89(6):742–752. doi: 10.1016/0002-8703(75)90189-1. [DOI] [PubMed] [Google Scholar]
- Berry B., Poulsen R., Yunge L., Bruneval P., Fitchett D., de Chastonay C., Gabbiani G., Hüttner I. Numerical densities of intramembrane particles in the cardiac sarcolemma of normal and myopathic Syrian hamsters. J Mol Cell Cardiol. 1983 Aug;15(8):503–513. doi: 10.1016/0022-2828(83)90326-7. [DOI] [PubMed] [Google Scholar]
- Boutet M., Hüttner I., Rona G. Aspect microcirculatoire des l'esions myocardiques provoquées par l'infusion de catécholamines. Etude ultrastructurale á l'aide de traceurs de diffusion. I. Isoprotérénol. Pathol Biol (Paris) 1973 Oct;21(8):811–825. [PubMed] [Google Scholar]
- Boutet M., Hüttner I., Rona G. Permeability alteration of sarcolemmal membrane in catecholamine-induced cardiac muscle cell injury. In vivo studies with fine structural diffusion tracer horse radish peroxidase. Lab Invest. 1976 May;34(5):482–488. [PubMed] [Google Scholar]
- Branton D., Bullivant S., Gilula N. B., Karnovsky M. J., Moor H., Mühlethaler K., Northcote D. H., Packer L., Satir B., Satir P. Freeze-etching nomenclature. Science. 1975 Oct 3;190(4209):54–56. doi: 10.1126/science.1166299. [DOI] [PubMed] [Google Scholar]
- Brown D., Grosso A., de Sousa R. C. Isoproterenol-induced intramembrane particle aggregation and water flux in toad epidermis. Biochim Biophys Acta. 1980 Feb 15;596(1):158–164. doi: 10.1016/0005-2736(80)90181-9. [DOI] [PubMed] [Google Scholar]
- Bruneval P., Yunge L., Hüttner I. Isoproterenol induced fatty change in rat myocardium: freeze fracture study of the sarcolemma at sites of lipid droplet-membrane appositions. J Submicrosc Cytol. 1985 Jul;17(3):335–343. [PubMed] [Google Scholar]
- Bulkely B. H., Hutchins G. M. Myocardial consequences of coronary artery bypass graft surgery. The paradox of necrosis in areas of revascularization. Circulation. 1977 Dec;56(6):906–913. doi: 10.1161/01.cir.56.6.906. [DOI] [PubMed] [Google Scholar]
- Cebelin M. S., Hirsch C. S. Human stress cardiomyopathy. Myocardial lesions in victims of homicidal assaults without internal injuries. Hum Pathol. 1980 Mar;11(2):123–132. doi: 10.1016/s0046-8177(80)80129-8. [DOI] [PubMed] [Google Scholar]
- Cheung J. Y., Bonventre J. V., Malis C. D., Leaf A. Calcium and ischemic injury. N Engl J Med. 1986 Jun 26;314(26):1670–1676. doi: 10.1056/NEJM198606263142604. [DOI] [PubMed] [Google Scholar]
- Chien K. R., Abrams J., Serroni A., Martin J. T., Farber J. L. Accelerated phospholipid degradation and associated membrane dysfunction in irreversible, ischemic liver cell injury. J Biol Chem. 1978 Jul 10;253(13):4809–4817. [PubMed] [Google Scholar]
- Coleman S. E., Duggan J., Hackett R. L. Plasma membrane changes in freeze-fractured rat kidney cortex following renal ischemia. Lab Invest. 1976 Jul;35(1):63–70. [PubMed] [Google Scholar]
- Corr P. B., Gross R. W., Sobel B. E. Amphipathic metabolites and membrane dysfunction in ischemic myocardium. Circ Res. 1984 Aug;55(2):135–154. doi: 10.1161/01.res.55.2.135. [DOI] [PubMed] [Google Scholar]
- Csapó Z., Dusek J., Rona G. Early alterations of the cardiac muscle cells in isoproterenol-induced necrosis. Arch Pathol. 1972 Apr;93(4):356–365. [PubMed] [Google Scholar]
- Cuénoud H. F., Joris I., Majno G. Ultrastructure of the myocardium after pulmonary embolism. A study in the rat. Am J Pathol. 1978 Aug;92(2):421–458. [PMC free article] [PubMed] [Google Scholar]
- Dhalla N. S., Yates J. C., Lee S. L., Singh A. Functional and subcellular changes in the isolated rat heart perfused with oxidized isoproterenol. J Mol Cell Cardiol. 1978 Jan;10(1):31–41. doi: 10.1016/0022-2828(78)90004-4. [DOI] [PubMed] [Google Scholar]
- Farber J. L., Chien K. R., Mittnacht S., Jr Myocardial ischemia: the pathogenesis of irreversible cell injury in ischemia. Am J Pathol. 1981 Feb;102(2):271–281. [PMC free article] [PubMed] [Google Scholar]
- Frame L. H., Lopez J. A., Khaw B. A., Fallon J. T., Haber E., Powell W. J., Jr Early membrane damage during coronary reperfusion in dogs. Detection by radiolabeled anticardiac myosin (Fab')2. J Clin Invest. 1983 Aug;72(2):535–544. doi: 10.1172/JCI111001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frank J. S., Beydler S., Kreman M., Rau E. E. Structure of the freeze-fractured sarcolemma in the normal and anoxic rabbit myocardium. Circ Res. 1980 Jul;47(1):131–143. doi: 10.1161/01.res.47.1.131. [DOI] [PubMed] [Google Scholar]
- Frank J. S., Rich T. L., Beydler S., Kreman M. Calcium depletion in rabbit myocardium. Ultrastructure of the sarcolemma and correlation with the calcium paradox. Circ Res. 1982 Aug;51(2):117–130. doi: 10.1161/01.res.51.2.117. [DOI] [PubMed] [Google Scholar]
- Freeman B. A., Crapo J. D. Biology of disease: free radicals and tissue injury. Lab Invest. 1982 Nov;47(5):412–426. [PubMed] [Google Scholar]
- Friend D. S., Rosenau W. Target-cell membrane alterations induced by lymphotoxin. Ultrastructural observations. Am J Pathol. 1977 Jan;86(1):149–162. [PMC free article] [PubMed] [Google Scholar]
- Ganote C. E. Contraction band necrosis and irreversible myocardial injury. J Mol Cell Cardiol. 1983 Feb;15(2):67–73. doi: 10.1016/0022-2828(83)90283-3. [DOI] [PubMed] [Google Scholar]
- Ganote C. E., Vander Heide R. S. Cytoskeletal lesions in anoxic myocardial injury. A conventional and high-voltage electron-microscopic and immunofluorescence study. Am J Pathol. 1987 Nov;129(2):327–344. [PMC free article] [PubMed] [Google Scholar]
- Ganote C. E., Worstell J., Kaltenbach J. P. Oxygen-induced enzyme release after irreversible myocardial injury. Effects of cyanide in perfused rat hearts. Am J Pathol. 1976 Aug;84(2):327–350. [PMC free article] [PubMed] [Google Scholar]
- Gotlieb A., Masse S., Allard J., Dobell A., Huang S. Concentric hemorrhagic necrosis of the myocardium. A morphological and clinical study. Hum Pathol. 1977 Jan;8(1):27–37. doi: 10.1016/s0046-8177(77)80063-4. [DOI] [PubMed] [Google Scholar]
- Graham R. C., Jr, Karnovsky M. J. The early stages of absorption of injected horseradish peroxidase in the proximal tubules of mouse kidney: ultrastructural cytochemistry by a new technique. J Histochem Cytochem. 1966 Apr;14(4):291–302. doi: 10.1177/14.4.291. [DOI] [PubMed] [Google Scholar]
- Hearse D. J., Humphrey S. M., Bullock G. R. The oxygen paradox and the calcium paradox: two facets of the same problem? J Mol Cell Cardiol. 1978 Jul;10(7):641–668. doi: 10.1016/s0022-2828(78)80004-2. [DOI] [PubMed] [Google Scholar]
- Hess M. L., Manson N. H. Molecular oxygen: friend and foe. The role of the oxygen free radical system in the calcium paradox, the oxygen paradox and ischemia/reperfusion injury. J Mol Cell Cardiol. 1984 Nov;16(11):969–985. doi: 10.1016/s0022-2828(84)80011-5. [DOI] [PubMed] [Google Scholar]
- Hutchins G. M., Silverman K. J. Pathology of the stone heart syndrome. Massive myocardial contraction band necrosis and widely patent coronary arteries. Am J Pathol. 1979 Jun;95(3):745–752. [PMC free article] [PubMed] [Google Scholar]
- Jain A., Homan J., Symes J., Jothy S., Yunge L., Huttner I., Sniderman A. Brief periods of myocardial ischemia followed by reperfusion: a model in the dog of sudden cardiac death in humans. Can J Cardiol. 1987 Mar;3(2):83–89. [PubMed] [Google Scholar]
- Jennings R. B., Ganote C. E., Reimer K. A. Ischemic tissue injury. Am J Pathol. 1975 Oct;81(1):179–198. [PMC free article] [PubMed] [Google Scholar]
- Jennings R. B., Reimer K. A. Lethal myocardial ischemic injury. Am J Pathol. 1981 Feb;102(2):241–255. [PMC free article] [PubMed] [Google Scholar]
- Jolly S. R., Kane W. J., Bailie M. B., Abrams G. D., Lucchesi B. R. Canine myocardial reperfusion injury. Its reduction by the combined administration of superoxide dismutase and catalase. Circ Res. 1984 Mar;54(3):277–285. doi: 10.1161/01.res.54.3.277. [DOI] [PubMed] [Google Scholar]
- Karch S. B., Billingham M. E. Myocardial contraction bands revisited. Hum Pathol. 1986 Jan;17(1):9–13. doi: 10.1016/s0046-8177(86)80150-2. [DOI] [PubMed] [Google Scholar]
- Katz A. M., Messineo F. C. Lipid-membrane interactions and the pathogenesis of ischemic damage in the myocardium. Circ Res. 1981 Jan;48(1):1–16. doi: 10.1161/01.res.48.1.1. [DOI] [PubMed] [Google Scholar]
- King R. B., Bassingthwaighte J. B., Hales J. R., Rowell L. B. Stability of heterogeneity of myocardial blood flow in normal awake baboons. Circ Res. 1985 Aug;57(2):285–295. doi: 10.1161/01.res.57.2.285. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kunos G. Adrenoceptors. Annu Rev Pharmacol Toxicol. 1978;18:291–311. doi: 10.1146/annurev.pa.18.040178.001451. [DOI] [PubMed] [Google Scholar]
- Kurland G., Williams J., Lewiston N. J. Fatal myocardial toxicity during continuous infusion intravenous isoproterenol therapy of asthma. J Allergy Clin Immunol. 1979 Jun;63(6):407–411. doi: 10.1016/0091-6749(79)90214-8. [DOI] [PubMed] [Google Scholar]
- Long R., Symes J., Allard J., Burdon T., Lisbona R., Huttner I., Sniderman A. Differentiation between reperfusion and occlusion myocardial necrosis with technetium-99m pyrophospate scans. Am J Cardiol. 1980 Sep;46(3):413–418. doi: 10.1016/0002-9149(80)90009-0. [DOI] [PubMed] [Google Scholar]
- Matthews S. B., Henderson A. H., Campbell A. K. The adrenochrome pathway: the major route for adrenalin catabolism by polymorphonuclear leucocytes. J Mol Cell Cardiol. 1985 Apr;17(4):339–348. doi: 10.1016/s0022-2828(85)80133-4. [DOI] [PubMed] [Google Scholar]
- Mickleborough L., Huttner I., Symes J., Poirier N., Sniderman A. D. Significance of epicardial Q waves as an acute marker of myocardial necrosis in dogs. Cardiovasc Res. 1978 Jun;12(6):376–386. doi: 10.1093/cvr/12.6.376. [DOI] [PubMed] [Google Scholar]
- Noronha-Dutra A. A., Steen E. M. Lipid peroxidation as a mechanism of injury in cardiac myocytes. Lab Invest. 1982 Oct;47(4):346–353. [PubMed] [Google Scholar]
- Noronha-Dutra A. A., Steen E. M., Woolf N. The early changes induced by isoproterenol in the endocardium and adjacent myocardium. Am J Pathol. 1984 Feb;114(2):231–239. [PMC free article] [PubMed] [Google Scholar]
- Pauli B. U., Friedell G. H., Weinstein R. S. Topography and numerical densities of intramembrane particles in chemical carcinogen-induced urinary bladder carcinomas in Fischer rats. Lab Invest. 1978 Dec;39(6):565–573. [PubMed] [Google Scholar]
- Pinto da Silva P. Translational mobility of the membrane intercalated particles of human erythrocyte ghosts. pH-dependent, reversible aggregation. J Cell Biol. 1972 Jun;53(3):777–787. doi: 10.1083/jcb.53.3.777. [DOI] [PMC free article] [PubMed] [Google Scholar]
- RONA G., CHAPPEL C. I., BALAZS T., GAUDRY R. An infarct-like myocardial lesion and other toxic manifestations produced by isoproterenol in the rat. AMA Arch Pathol. 1959 Apr;67(4):443–455. [PubMed] [Google Scholar]
- Rona G., Boutet M., Hüttner I. Reperfusion injury. A possible link between catecholamine-induced and ischemic myocardial alterations. Adv Myocardiol. 1983;4:427–439. [PubMed] [Google Scholar]
- Rona G. Catecholamine cardiotoxicity. J Mol Cell Cardiol. 1985 Apr;17(4):291–306. doi: 10.1016/s0022-2828(85)80130-9. [DOI] [PubMed] [Google Scholar]
- SZAKACS J. E., CANNON A. L-Norepinephrine myocarditis. Am J Clin Pathol. 1958 Nov;30(5):425–434. doi: 10.1093/ajcp/30.5.425. [DOI] [PubMed] [Google Scholar]
- Singer S. J., Nicolson G. L. The fluid mosaic model of the structure of cell membranes. Science. 1972 Feb 18;175(4023):720–731. doi: 10.1126/science.175.4023.720. [DOI] [PubMed] [Google Scholar]
- Steen E. M., Noronha-Dutra A. A., Woolf N. The response of isolated rat heart cells to cardiotoxic concentrations of isoprenaline. J Pathol. 1982 Jun;137(2):167–176. doi: 10.1002/path.1711370210. [DOI] [PubMed] [Google Scholar]
- Steenbergen C., Hill M. L., Jennings R. B. Cytoskeletal damage during myocardial ischemia: changes in vinculin immunofluorescence staining during total in vitro ischemia in canine heart. Circ Res. 1987 Apr;60(4):478–486. doi: 10.1161/01.res.60.4.478. [DOI] [PubMed] [Google Scholar]
- Szentivanyi M., Pace J. B., Wechsler J. S., Randall W. C. Localized myocardial responses to stimulation of cardiac sympathetic nerves. Circ Res. 1967 Nov;21(5):691–702. doi: 10.1161/01.res.21.5.691. [DOI] [PubMed] [Google Scholar]
- Thompson J. A., Hess M. L. The oxygen free radical system: a fundamental mechanism in the production of myocardial necrosis. Prog Cardiovasc Dis. 1986 May-Jun;28(6):449–462. doi: 10.1016/0033-0620(86)90027-7. [DOI] [PubMed] [Google Scholar]
- Wade J. B., Kachadorian W. A., DiScala V. A. Freeze-fracture electron microscopy: relationship of membrane structural features to transport physiology. Am J Physiol. 1977 Feb;232(2):F77–F83. doi: 10.1152/ajprenal.1977.232.2.F77. [DOI] [PubMed] [Google Scholar]
- Wheatley A. M., Thandroyen F. T., Opie L. H. Catecholamine-induced myocardial cell damage: catecholamines or adrenochrome. J Mol Cell Cardiol. 1985 Apr;17(4):349–359. doi: 10.1016/s0022-2828(85)80134-6. [DOI] [PubMed] [Google Scholar]
- Yates J. C., Dhalla N. S. Induction of necrosis and failure in the isolated perfused rat heart with oxidized isoproterenol. J Mol Cell Cardiol. 1975 Nov;7(11):807–816. doi: 10.1016/0022-2828(75)90132-7. [DOI] [PubMed] [Google Scholar]
- Yates J. C., Taam G. M., Singal P. K., Beamish R. E., Dhalla N. S. Modification of adrenochrome-induced cardiac contractile failure and cell damage by changes in cation concentrations. Lab Invest. 1980 Oct;43(4):316–326. [PubMed] [Google Scholar]
- Zimmerman A. N., Hülsmann W. C. Paradoxical influence of calcium ions on the permeability of the cell membranes of the isolated rat heart. Nature. 1966 Aug 6;211(5049):646–647. doi: 10.1038/211646a0. [DOI] [PubMed] [Google Scholar]







