Skip to main content
The American Journal of Pathology logoLink to The American Journal of Pathology
. 1989 Feb;134(2):305–313.

A 90-kd surface antigen from a subpopulation of smooth muscle cells from human atherosclerotic lesions.

O J Printseva 1, M M Peclo 1, A V Tjurmin 1, A I Faerman 1, S M Danilov 1, V S Repin 1, V N Smirnov 1
PMCID: PMC1879573  PMID: 2916651

Abstract

A monoclonal antibody, designated 10F3, that reacts with an antigen with a molecular weight of 90,000 daltons has been obtained after immunization of BALB/c mice with long-term cultured smooth muscle cells (SMC) originally isolated from fetal human aorta (fSMC). In adults the antigen is present on venous, arterial and capillary endothelial cells of heart, kidney, liver, spleen, intestine, skin, uterus, placenta, and arteries only, as shown by immunohistochemical investigation using the PAP technique. The antigen 10F3 is also present on the mesenchymal cells of human fetal tissues (7 and 18-week-old fetuses) and on SMC of 7-week-old fetal aorta, and a subpopulation of cells reacting with 10F3 antibody also has been found in atherosclerotic intima. Double staining using 10F3 antibody and muscle actin-specific monoclonal antibody HHF-35 showed that the antigen-positive cells are smooth muscle cells. In primary culture of adult SMC, antigen-positive cells were detected 2 days after seeding (about 90% positive in medial and intimal cultures). It is suggested that 10F3 is a mesenchymal antigen that, lost during differentiation by cells other than endothelium, but expressed again by the SMC involved in atherogenesis.

Full text

PDF
305

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allikmets EYu, Danilov S. M. Mitogen-induced disorganization of capillary-like structures formed by human large vessel endothelial cells in vitro. Tissue Cell. 1986;18(4):481–489. doi: 10.1016/0040-8166(86)90014-5. [DOI] [PubMed] [Google Scholar]
  2. Anderson C. W., Baum P. R., Gesteland R. F. Processing of adenovirus 2-induced proteins. J Virol. 1973 Aug;12(2):241–252. doi: 10.1128/jvi.12.2.241-252.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Campbell G. R., Chamley-Campbell J. H. Invited review: the cellular pathobiology of atherosclerosis. Pathology. 1981 Jul;13(3):423–440. doi: 10.3109/00313028109059061. [DOI] [PubMed] [Google Scholar]
  4. Campbell J. H., Popadynec L., Nestel P. J., Campbell G. R. Lipid accumulation in arterial smooth muscle cells. Influence of phenotype. Atherosclerosis. 1983 Jun;47(3):279–295. doi: 10.1016/0021-9150(83)90059-x. [DOI] [PubMed] [Google Scholar]
  5. Campbell J. H., Reardon M. F., Campbell G. R., Nestel P. J. Metabolism of atherogenic lipoproteins by smooth muscle cells of different phenotype in culture. Arteriosclerosis. 1985 Jul-Aug;5(4):318–328. doi: 10.1161/01.atv.5.4.318. [DOI] [PubMed] [Google Scholar]
  6. Chamley-Campbell J. H., Campbell G. R., Ross R. Phenotype-dependent response of cultured aortic smooth muscle to serum mitogens. J Cell Biol. 1981 May;89(2):379–383. doi: 10.1083/jcb.89.2.379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chamley-Campbell J. H., Campbell G. R. What controls smooth muscle phenotype? Atherosclerosis. 1981 Nov-Dec;40(3-4):347–357. doi: 10.1016/0021-9150(81)90145-3. [DOI] [PubMed] [Google Scholar]
  8. Faerman A. I., Chervonskii A. V., Chipysheva T. A., Gel'shtein V. I., Koliada A. Iu. Poluchenie monoklonal'nykh antitel k peroksidaze khrena i ikh primenenie v immunogistokhimii i immunoblottinge. Biull Eksp Biol Med. 1987 May;103(5):631–634. [PubMed] [Google Scholar]
  9. Gerrity R. G., Adams E. P., Cliff W. J. The aortic tunica media of the developing rat. II. Incorporation by medial cells 3-H-proline into collagen and elastin: autoradiographic and chemical studies. Lab Invest. 1975 May;32(5):601–609. [PubMed] [Google Scholar]
  10. Gown A. M., Tsukada T., Ross R. Human atherosclerosis. II. Immunocytochemical analysis of the cellular composition of human atherosclerotic lesions. Am J Pathol. 1986 Oct;125(1):191–207. [PMC free article] [PubMed] [Google Scholar]
  11. Jonasson L., Holm J., Skalli O., Gabbiani G., Hansson G. K. Expression of class II transplantation antigen on vascular smooth muscle cells in human atherosclerosis. J Clin Invest. 1985 Jul;76(1):125–131. doi: 10.1172/JCI111934. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kaplan K. L., Weber D., Cook P., Dalecki M., Rogozinski L., Sepe O., Knowles D., Butler V. P. Monoclonal antibodies to E92, an endothelial cell surface antigen. Arteriosclerosis. 1983 Sep-Oct;3(5):403–412. doi: 10.1161/01.atv.3.5.403. [DOI] [PubMed] [Google Scholar]
  13. Layman D. L., Epstein E. H., Jr, Dodson R. F., Titus J. L. Biosynthesis of type I and III collagens by cultured smooth muscle cells from human aorta. Proc Natl Acad Sci U S A. 1977 Feb;74(2):671–675. doi: 10.1073/pnas.74.2.671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Mason D. Y., Cordell J. L., Abdulaziz Z., Naiem M., Bordenave G. Preparation of peroxidase: antiperoxidase (PAP) complexes for immunohistological labeling of monoclonal antibodies. J Histochem Cytochem. 1982 Nov;30(11):1114–1122. doi: 10.1177/30.11.6183312. [DOI] [PubMed] [Google Scholar]
  15. Mosse P. R., Campbell G. R., Campbell J. H. Smooth muscle phenotypic expression in human carotid arteries. II. Atherosclerosis-free diffuse intimal thickenings compared with the media. Arteriosclerosis. 1986 Nov-Dec;6(6):664–669. doi: 10.1161/01.atv.6.6.664. [DOI] [PubMed] [Google Scholar]
  16. Mosse P. R., Campbell G. R., Wang Z. L., Campbell J. H. Smooth muscle phenotypic expression in human carotid arteries. I. Comparison of cells from diffuse intimal thickenings adjacent to atheromatous plaques with those of the media. Lab Invest. 1985 Nov;53(5):556–562. [PubMed] [Google Scholar]
  17. Narayanan A. S., Sandberg L. B., Ross R., Layman D. L. The smooth muscle cell. III. Elastin synthesis in arterial smooth muscle cell culture. J Cell Biol. 1976 Mar;68(3):411–419. doi: 10.1083/jcb.68.3.411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Orekhov A. N., Karpova I. I., Tertov V. V., Rudchenko S. A., Andreeva E. R., Krushinsky A. V., Smirnov V. N. Cellular composition of atherosclerotic and uninvolved human aortic subendothelial intima. Light-microscopic study of dissociated aortic cells. Am J Pathol. 1984 Apr;115(1):17–24. [PMC free article] [PubMed] [Google Scholar]
  19. Palmberg L., Thyberg J. Uterine smooth muscle cells in primary culture. Alterations in fine structure, cytoskeletal organization and growth characteristics. Cell Tissue Res. 1986;246(2):253–262. doi: 10.1007/BF00215887. [DOI] [PubMed] [Google Scholar]
  20. Printseva OYu, Faerman A. I., Tjurmin A. V. The expression of specific surface antigen of smooth muscle cells is related to proliferation. Exp Cell Res. 1987 Mar;169(1):85–94. doi: 10.1016/0014-4827(87)90227-8. [DOI] [PubMed] [Google Scholar]
  21. Ross R. George Lyman Duff Memorial Lecture. Atherosclerosis: a problem of the biology of arterial wall cells and their interactions with blood components. Arteriosclerosis. 1981 Sep-Oct;1(5):293–311. doi: 10.1161/01.atv.1.5.293. [DOI] [PubMed] [Google Scholar]
  22. Ross R., Glomset J. A. The pathogenesis of atherosclerosis (second of two parts). N Engl J Med. 1976 Aug 19;295(8):420–425. doi: 10.1056/NEJM197608192950805. [DOI] [PubMed] [Google Scholar]
  23. Ross R., Klebanoff S. J. The smooth muscle cell. I. In vivo synthesis of connective tissue proteins. J Cell Biol. 1971 Jul;50(1):159–171. doi: 10.1083/jcb.50.1.159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Schlondorff D. The glomerular mesangial cell: an expanding role for a specialized pericyte. FASEB J. 1987 Oct;1(4):272–281. doi: 10.1096/fasebj.1.4.3308611. [DOI] [PubMed] [Google Scholar]
  25. Schwartz S. M., Campbell G. R., Campbell J. H. Replication of smooth muscle cells in vascular disease. Circ Res. 1986 Apr;58(4):427–444. doi: 10.1161/01.res.58.4.427. [DOI] [PubMed] [Google Scholar]
  26. Sternberger L. A., Joseph S. A. The unlabeled antibody method. Contrasting color staining of paired pituitary hormones without antibody removal. J Histochem Cytochem. 1979 Nov;27(11):1424–1429. doi: 10.1177/27.11.92498. [DOI] [PubMed] [Google Scholar]
  27. Thyberg J., Palmberg L., Nilsson J., Ksiazek T., Sjölund M. Phenotype modulation in primary cultures of arterial smooth muscle cells. On the role of platelet-derived growth factor. Differentiation. 1983;25(2):156–167. doi: 10.1111/j.1432-0436.1984.tb01351.x. [DOI] [PubMed] [Google Scholar]
  28. Tsukada T., Tippens D., Gordon D., Ross R., Gown A. M. HHF35, a muscle-actin-specific monoclonal antibody. I. Immunocytochemical and biochemical characterization. Am J Pathol. 1987 Jan;126(1):51–60. [PMC free article] [PubMed] [Google Scholar]

Articles from The American Journal of Pathology are provided here courtesy of American Society for Investigative Pathology

RESOURCES