Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1993 Jun;37(6):1318–1323. doi: 10.1128/aac.37.6.1318

Enhancement of drug susceptibility in Plasmodium falciparum in vitro and Plasmodium berghei in vivo by mixed-function oxidase inhibitors.

A M Ndifor 1, R E Howells 1, P G Bray 1, J L Ngu 1, S A Ward 1
PMCID: PMC187959  PMID: 8328780

Abstract

A number of compounds, as exemplified by verapamil and desipramine, have been shown to enhance the susceptibility of resistant malaria parasites to chloroquine. The mechanism by which these agents reverse resistance is still controversial but is though to involve alterations in drug transport causing an increase in steady-state drug concentrations. We have proposed that an alternative resistance mechanism may involve the metabolic deactivation of the drug in some resistant parasites via cytochrome P-450 mixed-function oxidases. If the hypothesis is true, it should be possible to alter drug susceptibility in malaria parasites by the use of agents known to inhibit or induce cytochrome P-450 activities. We have assessed the ability of known inhibitors of cytochrome P-450 enzymes (cimetidine, metyrapone, and alpha-naphthoflavone) to enhance chloroquine susceptibility in Plasmodium falciparum culture-adapted and wild-type isolates in vitro and P. berghei in vivo. In all three systems, the inhibitor cimetidine enhanced parasite susceptibility to chloroquine, and this increase in susceptibility was unrelated to changes in chloroquine steady-state concentrations in vitro or to alterations in host pharmacokinetics in vivo. Additionally, the cytochrome P-450 inducer phenobarbital produced slight decreases in P. falciparum drug susceptibility in vitro. We have compared the ability of the cytochrome P-450 inhibitors cimetidine and metyrapone to enhance drug susceptibility with that of verapamil by using wild-type malaria isolates obtained from Cameroon. Verapamil completely reversed resistance, i.e., to below the cutoff point of 70 nM, in all the resistant isolates. Cimetidine enhanced chloroquine susceptibility in 60% of the isolates and reduced 50% inhibitory concentrations by at least 43% in all the resistant isolates. The compounds tested had little or no effect on the 50% inhibitory concentrations for the susceptible isolates. The data support a possible role for detoxification in chloroquine resistance, and even in the absence of such a process we have observed apparent chemosensitization by agents whose common biological feature is the inhibition of cytochrome P-450 enzymes. Additionally, sensitization has been observed in wild-type isolates of P. falciparum obtained form immune residents of an area of endemicity as well as culture-adapted parasites.

Full text

PDF
1318

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alván G., Ekman L., Lindström B. Determination of chloroquine and its desethyl metabolite in plasma, red blood cells and urine by liquid chromatography. J Chromatogr. 1982 Apr 16;229(1):241–247. doi: 10.1016/s0378-4347(00)86059-4. [DOI] [PubMed] [Google Scholar]
  2. Barry M., Feely J. Enzyme induction and inhibition. Pharmacol Ther. 1990;48(1):71–94. doi: 10.1016/0163-7258(90)90019-x. [DOI] [PubMed] [Google Scholar]
  3. Basco L. K., Le Bras J. Reversal of chloroquine resistance with desipramine in isolates of Plasmodium falciparum from Central and West Africa. Trans R Soc Trop Med Hyg. 1990 Jul-Aug;84(4):479–481. doi: 10.1016/0035-9203(90)90006-z. [DOI] [PubMed] [Google Scholar]
  4. Bitonti A. J., Sjoerdsma A., McCann P. P., Kyle D. E., Oduola A. M., Rossan R. N., Milhous W. K., Davidson D. E., Jr Reversal of chloroquine resistance in malaria parasite Plasmodium falciparum by desipramine. Science. 1988 Dec 2;242(4883):1301–1303. doi: 10.1126/science.3057629. [DOI] [PubMed] [Google Scholar]
  5. Brasseur P., Druilhe P., Kouamouo J., Brandicourt O., Danis M., Moyou S. R. High level of sensitivity to chloroquine of 72 Plasmodium falciparum isolates from southern Cameroon in January 1985. Am J Trop Med Hyg. 1986 Jul;35(4):711–716. doi: 10.4269/ajtmh.1986.35.711. [DOI] [PubMed] [Google Scholar]
  6. Bray P. G., Howells R. E., Ward S. A. Vacuolar acidification and chloroquine sensitivity in Plasmodium falciparum. Biochem Pharmacol. 1992 Mar 17;43(6):1219–1227. doi: 10.1016/0006-2952(92)90495-5. [DOI] [PubMed] [Google Scholar]
  7. Charmot G., Amat-Roze J. M., Rodhain F., Le Bras J., Coulaud J. P. Abord géographique de l'épidémiologie de la chloroquino-résistance de Plasmodium falciparum en Afrique tropicale. Ann Soc Belg Med Trop. 1991 Sep;71(3):187–197. [PubMed] [Google Scholar]
  8. Cowman A. F. The P-glycoprotein homologues of Plasmodium falciparum: Are they involved in chloroquine resistance? Parasitol Today. 1991 Apr;7(4):70–76. doi: 10.1016/0169-4758(91)90197-v. [DOI] [PubMed] [Google Scholar]
  9. Desjardins R. E., Canfield C. J., Haynes J. D., Chulay J. D. Quantitative assessment of antimalarial activity in vitro by a semiautomated microdilution technique. Antimicrob Agents Chemother. 1979 Dec;16(6):710–718. doi: 10.1128/aac.16.6.710. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Edwards G., Looareesuwan S., Davies A. J., Wattanagoon Y., Phillips R. E., Warrell D. A. Pharmacokinetics of chloroquine in Thais: plasma and red-cell concentrations following an intravenous infusion to healthy subjects and patients with Plasmodium vivax malaria. Br J Clin Pharmacol. 1988 Apr;25(4):477–485. doi: 10.1111/j.1365-2125.1988.tb03332.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Foote S. J., Kyle D. E., Martin R. K., Oduola A. M., Forsyth K., Kemp D. J., Cowman A. F. Several alleles of the multidrug-resistance gene are closely linked to chloroquine resistance in Plasmodium falciparum. Nature. 1990 May 17;345(6272):255–258. doi: 10.1038/345255a0. [DOI] [PubMed] [Google Scholar]
  12. Geary T. G., Jensen J. B., Ginsburg H. Uptake of [3H]chloroquine by drug-sensitive and -resistant strains of the human malaria parasite Plasmodium falciparum. Biochem Pharmacol. 1986 Nov 1;35(21):3805–3812. doi: 10.1016/0006-2952(86)90668-4. [DOI] [PubMed] [Google Scholar]
  13. Ginsburg H., Krugliak M. Quinoline-containing antimalarials--mode of action, drug resistance and its reversal. An update with unresolved puzzles. Biochem Pharmacol. 1992 Jan 9;43(1):63–70. doi: 10.1016/0006-2952(92)90662-3. [DOI] [PubMed] [Google Scholar]
  14. Jensen J. C., Gugler R. Cimetidine interaction with liver microsomes in vitro and in vivo. Involvement of an activated complex with cytochrome P-450. Biochem Pharmacol. 1985 Jun 15;34(12):2141–2146. doi: 10.1016/0006-2952(85)90408-3. [DOI] [PubMed] [Google Scholar]
  15. Krogstad D. J., Gluzman I. Y., Kyle D. E., Oduola A. M., Martin S. K., Milhous W. K., Schlesinger P. H. Efflux of chloroquine from Plasmodium falciparum: mechanism of chloroquine resistance. Science. 1987 Nov 27;238(4831):1283–1285. doi: 10.1126/science.3317830. [DOI] [PubMed] [Google Scholar]
  16. Kyle D. E., Oduola A. M., Martin S. K., Milhous W. K. Plasmodium falciparum: modulation by calcium antagonists of resistance to chloroquine, desethylchloroquine, quinine, and quinidine in vitro. Trans R Soc Trop Med Hyg. 1990 Jul-Aug;84(4):474–478. doi: 10.1016/0035-9203(90)90004-x. [DOI] [PubMed] [Google Scholar]
  17. Martin S. K., Oduola A. M., Milhous W. K. Reversal of chloroquine resistance in Plasmodium falciparum by verapamil. Science. 1987 Feb 20;235(4791):899–901. doi: 10.1126/science.3544220. [DOI] [PubMed] [Google Scholar]
  18. Murray M. Mechanisms of the inhibition of cytochrome P-450-mediated drug oxidation by therapeutic agents. Drug Metab Rev. 1987;18(1):55–81. doi: 10.3109/03602538708998300. [DOI] [PubMed] [Google Scholar]
  19. Ndifor A. M., Ward S. A., Howells R. E. Cytochrome P-450 activity in malarial parasites and its possible relationship to chloroquine resistance. Mol Biochem Parasitol. 1990 Jun;41(2):251–257. doi: 10.1016/0166-6851(90)90188-r. [DOI] [PubMed] [Google Scholar]
  20. Netter K. J. Inhibition of oxidative drug metabolism in microsomes. Pharmacol Ther. 1980;10(3):515–535. doi: 10.1016/0163-7258(80)90029-7. [DOI] [PubMed] [Google Scholar]
  21. Peters W. Drug resistance in Plasmodium berghei Vincke and Lips, 1948. I. Chloroquine resistance. Exp Parasitol. 1965 Aug;17(1):80–89. doi: 10.1016/0014-4894(65)90012-3. [DOI] [PubMed] [Google Scholar]
  22. Peters W., Ekong R., Robinson B. L., Warhurst D. C., Pan X. Q. Antihistaminic drugs that reverse chloroquine resistance in Plasmodium falciparum. Lancet. 1989 Aug 5;2(8658):334–335. doi: 10.1016/s0140-6736(89)90522-9. [DOI] [PubMed] [Google Scholar]
  23. Peters W., Robinson B. L. The chemotherapy of rodent malaria. XLVI. Reversal of mefloquine resistance in rodent Plasmodium. Ann Trop Med Parasitol. 1991 Feb;85(1):5–10. doi: 10.1080/00034983.1991.11812525. [DOI] [PubMed] [Google Scholar]
  24. Rabinovich S. A., Kulikovskaya I. M., Maksakovskaya E. V., Chekhonadskikh T. V., Pankova T. G., Salganik R. I. Suppression of the chloroquine resistance of Plasmodium berghei by treatment of infected mice with a microsomal monooxygenase inhibitor. Bull World Health Organ. 1987;65(3):387–389. [PMC free article] [PubMed] [Google Scholar]
  25. Reilly P. E., Carrington L. E., Winzor D. J. The interaction of cimetidine with rat liver microsomes. Biochem Pharmacol. 1983 Mar 1;32(5):831–835. doi: 10.1016/0006-2952(83)90584-1. [DOI] [PubMed] [Google Scholar]
  26. Rumiantsev D. O., Piotrovskii V. K., Riabokon O. S., Slastnikova I. D., Kokurina E. V., Metelitsa V. I. The effect of oral verapamil therapy on antipyrine clearance. Br J Clin Pharmacol. 1986 Nov;22(5):606–609. doi: 10.1111/j.1365-2125.1986.tb02942.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Salako L. A., Sowunmi A., Walker O. Evaluation of the clinical efficacy and safety of halofantrine in falciparum malaria in Ibadan, Nigeria. Trans R Soc Trop Med Hyg. 1990 Sep-Oct;84(5):644–647. doi: 10.1016/0035-9203(90)90132-x. [DOI] [PubMed] [Google Scholar]
  28. Salganik R. I., Pankova T. G., Chekhonadskikh T. V., Igonina T. M. Chloroquine resistance of Plasmodium berghei: biochemical basis and countermeasures. Bull World Health Organ. 1987;65(3):381–386. [PMC free article] [PubMed] [Google Scholar]
  29. Slater A. F., Cerami A. Inhibition by chloroquine of a novel haem polymerase enzyme activity in malaria trophozoites. Nature. 1992 Jan 9;355(6356):167–169. doi: 10.1038/355167a0. [DOI] [PubMed] [Google Scholar]
  30. Trager W., Jensen J. B. Human malaria parasites in continuous culture. Science. 1976 Aug 20;193(4254):673–675. doi: 10.1126/science.781840. [DOI] [PubMed] [Google Scholar]
  31. Wellems T. E., Panton L. J., Gluzman I. Y., do Rosario V. E., Gwadz R. W., Walker-Jonah A., Krogstad D. J. Chloroquine resistance not linked to mdr-like genes in a Plasmodium falciparum cross. Nature. 1990 May 17;345(6272):253–255. doi: 10.1038/345253a0. [DOI] [PubMed] [Google Scholar]
  32. Wernsdorfer W. H. The development and spread of drug-resistant malaria. Parasitol Today. 1991 Nov;7(11):297–303. doi: 10.1016/0169-4758(91)90262-m. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES