Abstract
The levels of in vitro protein binding of cefonicid and cefuroxime in human adult and neonatal sera were compared. Binding parameters for each drug were determined within the concentration range of 25 to 3,000 micrograms/ml. Cefonicid exhibited concentration-dependent protein binding in both types of sera, with more extensive binding in adult serum at all concentrations. Two classes of binding sites were found: a high-affinity, saturable site and a low-affinity, nonspecific site. Cefuroxime also showed two-class, concentration-dependent protein binding in adult serum, but binding in neonatal serum was to a single class and was independent of drug concentration. Parameters for class 1 binding sites for cefonicid indicated one binding site per albumin molecule in both adult and neonatal sera, with association constants of 7.0 x 10(4) and 1.3 x 10(4) M-1, respectively. These parameters were also derived for cefuroxime in adult serum and were 0.15 and 7.1 x 10(4) M-1, respectively. In neonatal serum, the combined value (number of binding sites per molecule x equilibrium association constant) was similar to combined values calculated for class 2 binding sites for cefuroxime in adult serum and for cefonicid in neonatal serum (287 versus 195 and 261 M-1, respectively). Cephalosporins have been shown to compete with bilirubin for albumin binding sites. Lower levels of protein binding of cefuroxime in the therapeutic range may mean a lower potential for drug displacement of bilirubin in neonates, on the basis of these results. It may be prudent to select less highly protein-bound agents when treating neonatal infections.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Brendel E., Zschunke M., Meineke I. High-performance liquid chromatographic determination of cefonicid in human plasma and urine. J Chromatogr. 1985 May 3;339(2):359–365. doi: 10.1016/s0378-4347(00)84663-0. [DOI] [PubMed] [Google Scholar]
- Brodersen R. Competitive binding of bilirubin and drugs to human serum albumin studied by enzymatic oxidation. J Clin Invest. 1974 Dec;54(6):1353–1364. doi: 10.1172/JCI107882. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Connors J. E., DiPiro J. T., Hayter R. G., Hooker K. D., Stanfield J. A., Young T. R. Assessment of cefazolin and cefuroxime tissue penetration by using a continuous intravenous infusion. Antimicrob Agents Chemother. 1990 Jun;34(6):1128–1131. doi: 10.1128/aac.34.6.1128. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DiPiro J. T., Bayoumi S. M., Vallner J. J., Nesbit R. R., Gokhale R., Rissing J. P. Intraoperative ceforanide pharmacokinetics and protein binding. Antimicrob Agents Chemother. 1985 Apr;27(4):487–490. doi: 10.1128/aac.27.4.487. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DiPiro J. T., Vallner J. J., Bowden T. A., Jr, Clark B. A., Sisley J. F. Intraoperative serum and tissue activity of cefazolin and cefoxitin. Arch Surg. 1985 Jul;120(7):829–832. doi: 10.1001/archsurg.1985.01390310067015. [DOI] [PubMed] [Google Scholar]
- Dudley M. N., Quintiliani R., Nightingale C. H. Review of cefonicid, a long-acting cephalosporin. Clin Pharm. 1984 Jan-Feb;3(1):23–32. [PubMed] [Google Scholar]
- Foord R. D. Cefuroxime: human pharmacokinetics.. Antimicrob Agents Chemother. 1976 May;9(5):741–747. doi: 10.1128/aac.9.5.741. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jusko W. J., Gretch M. Plasma and tissue protein binding of drugs in pharmacokinetics. Drug Metab Rev. 1976;5(1):43–140. doi: 10.3109/03602537608995839. [DOI] [PubMed] [Google Scholar]
- Karp W. B., Robertson A. F., Davis H. C. Relationship of unbound bilirubin concentration to reserve albumin-binding concentration for bilirubin in human neonatal plasma. Biol Neonate. 1984;46(3):105–109. doi: 10.1159/000242052. [DOI] [PubMed] [Google Scholar]
- MacKichan J. J. Pharmacokinetic consequences of drug displacement from blood and tissue proteins. Clin Pharmacokinet. 1984 Jan;9 (Suppl 1):32–41. doi: 10.2165/00003088-198400091-00005. [DOI] [PubMed] [Google Scholar]
- Peterson L. R., Gerding D. N. Influence of protein binding of antibiotics on serum pharmacokinetics and extravascular penetration: clinically useful concepts. Rev Infect Dis. 1980 May-Jun;2(3):340–348. doi: 10.1093/clinids/2.3.340. [DOI] [PubMed] [Google Scholar]
- Robertson A., Fink S., Karp W. Effect of cephalosporins on bilirubin-albumin binding. J Pediatr. 1988 Feb;112(2):291–294. doi: 10.1016/s0022-3476(88)80072-6. [DOI] [PubMed] [Google Scholar]
- Rocci M. L., Jr, Johnson N. F., Jusko W. J. Serum protein binding of prednisolone in four species. J Pharm Sci. 1980 Aug;69(8):977–978. doi: 10.1002/jps.2600690831. [DOI] [PubMed] [Google Scholar]
- Stoeckel K., McNamara P. J., Brandt R., Plozza-Nottebrock H., Ziegler W. H. Effects of concentration-dependent plasma protein binding on ceftriaxone kinetics. Clin Pharmacol Ther. 1981 May;29(5):650–657. doi: 10.1038/clpt.1981.90. [DOI] [PubMed] [Google Scholar]
- Tompsett R., Shultz S., McDermott W. The Relation of Protein Binding to the Pharmacology and Antibacterial Activity of Penicillins X, G, Dihydro F, and K. J Bacteriol. 1947 May;53(5):581–595. doi: 10.1128/jb.53.5.581-595.1947. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wadsworth S. J., Suh B. In vitro displacement of bilirubin by antibiotics and 2-hydroxybenzoylglycine in newborns. Antimicrob Agents Chemother. 1988 Oct;32(10):1571–1575. doi: 10.1128/aac.32.10.1571. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yamaoka K., Nakagawa T., Uno T. Application of Akaike's information criterion (AIC) in the evaluation of linear pharmacokinetic equations. J Pharmacokinet Biopharm. 1978 Apr;6(2):165–175. doi: 10.1007/BF01117450. [DOI] [PubMed] [Google Scholar]
