Abstract
Normal cultured human epidermal melanocytes and melanoma cells derived from three different malignant melanomas were examined for synthesis of extracellular matrix components before and after treatment for one day with interferon-gamma, tumor necrosis factor-alpha, or both. Treatment of the cells with either cytokine individually had minimal effects on fibronectin levels. Treatment of the cells with the two agents in combination greatly stimulated fibronectin production as indicated by biosynthetic labeling and immunoprecipitation and by enzyme-linked immunosorbent assay. Synthesis of laminin was decreased slightly by the same treatment whereas thrombospondin production was stimulated slightly. The same treatment reduced melanocyte viability slightly but significantly inhibited proliferation and altered the morphology of the melanocytes. The treated cells became flattened and polygonal in shape while the untreated cells exhibited a bipolar shape with one or more long dendritic processes. These morphologic changes were not seen in cultures treated with interferon-gamma or tumor necrosis factor-alpha individually. The effects of interferon-gamma and tumor necrosis factor-alpha on fibronectin production by epidermal melanocytes are in contrast to the effects of the same treatments on fibronectin production by epidermal keratinocytes where fibronectin production is decreased but are similar to the effects of transforming growth factor-beta on a number of other cell types in which increased synthesis of fibronectin occurs and is associated with decreased growth.
Full text
PDF









Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anichini A., Mortarini R., Fossati G., Parmiani G. Phenotypic profile of clones from early cultures of human metastatic melanomas and its modulation by recombinant interferon gamma. Int J Cancer. 1986 Oct 15;38(4):505–511. doi: 10.1002/ijc.2910380409. [DOI] [PubMed] [Google Scholar]
- Bober F. J., Birk D. E., Raska K., Jr Expression of varying portions of the adenovirus 12 early region 1 in transformed cells affects tumorigenicity and interaction with extracellular matrix components. Lab Invest. 1987 Jan;56(1):37–43. [PubMed] [Google Scholar]
- Brown K. W., Parkinson E. K. Alteration of the extracellular matrix of cultured human keratinocytes by transformation and during differentiation. Int J Cancer. 1985 Jun 15;35(6):799–807. doi: 10.1002/ijc.2910350617. [DOI] [PubMed] [Google Scholar]
- Chakrabarty S., Brattain M. G., Ochs R. L., Varani J. Modulation of fibronectin, laminin, and cellular adhesion in the transformation and differentiation of murine AKR fibroblasts. J Cell Physiol. 1987 Dec;133(3):415–425. doi: 10.1002/jcp.1041330302. [DOI] [PubMed] [Google Scholar]
- Chakrabarty S., Tobon A., Varani J., Brattain M. G. Induction of carcinoembryonic antigen secretion and modulation of protein secretion/expression and fibronectin/laminin expression in human colon carcinoma cells by transforming growth factor-beta. Cancer Res. 1988 Jul 15;48(14):4059–4064. [PubMed] [Google Scholar]
- Chen L. B., Gallimore P. H., McDougall J. K. Correlation between tumor induction and the large external transformation sensitive protein on the cell surface. Proc Natl Acad Sci U S A. 1976 Oct;73(10):3570–3574. doi: 10.1073/pnas.73.10.3570. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dixit V. M., Grant G. A., Santoro S. A., Frazier W. A. Isolation and characterization of a heparin-binding domain from the amino terminus of platelet thrombospondin. J Biol Chem. 1984 Aug 25;259(16):10100–10105. [PubMed] [Google Scholar]
- Dixit V. M., Haverstick D. M., O'Rourke K. M., Hennessy S. W., Grant G. A., Santoro S. A., Frazier W. A. A monoclonal antibody against human thrombospondin inhibits platelet aggregation. Proc Natl Acad Sci U S A. 1985 May;82(10):3472–3476. doi: 10.1073/pnas.82.10.3472. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dixit V. M., Haverstick D. M., O'Rourke K. M., Hennessy S. W., Grant G. A., Santoro S. A., Frazier W. A. Effects of anti-thrombospondin monoclonal antibodies on the agglutination of erythrocytes and fixed, activated platelets by purified thrombospondin. Biochemistry. 1985 Jul 30;24(16):4270–4275. doi: 10.1021/bi00337a003. [DOI] [PubMed] [Google Scholar]
- Eisinger M., Marko O. Selective proliferation of normal human melanocytes in vitro in the presence of phorbol ester and cholera toxin. Proc Natl Acad Sci U S A. 1982 Mar;79(6):2018–2022. doi: 10.1073/pnas.79.6.2018. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Flodgren P., Borgström S., Jönsson P. E., Lindström C., Sjögren H. O. Metastatic malignant melanoma: regression induced by combined treatment with interferon [HuIFN-alpha(Le)] and cimetidine. Int J Cancer. 1983 Dec 15;32(6):657–665. doi: 10.1002/ijc.2910320603. [DOI] [PubMed] [Google Scholar]
- Fransen L., Van der Heyden J., Ruysschaert R., Fiers W. Recombinant tumor necrosis factor: its effect and its synergism with interferon-gamma on a variety of normal and transformed human cell lines. Eur J Cancer Clin Oncol. 1986 Apr;22(4):419–426. doi: 10.1016/0277-5379(86)90107-0. [DOI] [PubMed] [Google Scholar]
- Furcht L. T., Mosher D. F., Wendelschafer-Crabb G., Foidart J. M. Reversal by glucocorticoid hormones of the loss of a fibronectin and probollagen matrix around transformed human cells. Cancer Res. 1979 Jun;39(6 Pt 1):2077–2083. [PubMed] [Google Scholar]
- Galvin N. J., Dixit V. M., O'Rourke K. M., Santoro S. A., Grant G. A., Frazier W. A. Mapping of epitopes for monoclonal antibodies against human platelet thrombospondin with electron microscopy and high sensitivity amino acid sequencing. J Cell Biol. 1985 Oct;101(4):1434–1441. doi: 10.1083/jcb.101.4.1434. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Giacomini P., Imberti L., Aguzzi A., Fisher P. B., Trinchieri G., Ferrone S. Immunochemical analysis of the modulation of human melanoma-associated antigens by DNA recombinant immune interferon. J Immunol. 1985 Oct;135(4):2887–2894. [PubMed] [Google Scholar]
- Gilchrest B. A., Albert L. S., Karassik R. L., Yaar M. Substrate influences human epidermal melanocyte attachment and spreading in vitro. In Vitro Cell Dev Biol. 1985 Feb;21(2):114–120. doi: 10.1007/BF02620952. [DOI] [PubMed] [Google Scholar]
- Hayman E. G., Engvall E., Ruoslahti E. Butyrate restores fibronectin at cell surface of transformed cells. Exp Cell Res. 1980 Jun;127(2):478–481. doi: 10.1016/0014-4827(80)90458-9. [DOI] [PubMed] [Google Scholar]
- Hayman E. G., Engvall E., Ruoslahti E. Concomitant loss of cell surface fibronectin and laminin from transformed rat kidney cells. J Cell Biol. 1981 Feb;88(2):352–357. doi: 10.1083/jcb.88.2.352. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hayman E. G., Ruoslahti E. Distribution of fetal bovine serum fibronectin and endogenous rat cell fibronectin in extracellular matrix. J Cell Biol. 1979 Oct;83(1):255–259. doi: 10.1083/jcb.83.1.255. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Herlyn M., Guerry D., Koprowski H. Recombinant gamma-interferon induces changes in expression and shedding of antigens associated with normal human melanocytes, nevus cells, and primary and metastatic melanoma cells. J Immunol. 1985 Jun;134(6):4226–4230. [PubMed] [Google Scholar]
- Ignotz R. A., Endo T., Massagué J. Regulation of fibronectin and type I collagen mRNA levels by transforming growth factor-beta. J Biol Chem. 1987 May 15;262(14):6443–6446. [PubMed] [Google Scholar]
- Ignotz R. A., Massagué J. Cell adhesion protein receptors as targets for transforming growth factor-beta action. Cell. 1987 Oct 23;51(2):189–197. doi: 10.1016/0092-8674(87)90146-2. [DOI] [PubMed] [Google Scholar]
- Ignotz R. A., Massagué J. Transforming growth factor-beta stimulates the expression of fibronectin and collagen and their incorporation into the extracellular matrix. J Biol Chem. 1986 Mar 25;261(9):4337–4345. [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lee S. H., Aggarwal B. B., Rinderknecht E., Assisi F., Chiu H. The synergistic anti-proliferative effect of gamma-interferon and human lymphotoxin. J Immunol. 1984 Sep;133(3):1083–1086. [PubMed] [Google Scholar]
- Linder E., Vaheri A., Ruoslahti E., Wartiovaara J. Distribution of fibroblast surface antigen in the developing chick embryo. J Exp Med. 1975 Jul 1;142(1):41–49. doi: 10.1084/jem.142.1.41. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Madri J. A., Pratt B. M., Tucker A. M. Phenotypic modulation of endothelial cells by transforming growth factor-beta depends upon the composition and organization of the extracellular matrix. J Cell Biol. 1988 Apr;106(4):1375–1384. doi: 10.1083/jcb.106.4.1375. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nickoloff B. J., Riser B. L., Mitra R. S., Dixit V. M., Varani J. Inhibitory effect of gamma interferon on cultured human keratinocyte thrombospondin production, distribution, and biologic activities. J Invest Dermatol. 1988 Sep;91(3):213–218. doi: 10.1111/1523-1747.ep12465005. [DOI] [PubMed] [Google Scholar]
- Nielson S. E., Puck T. T. Deposition of fibronectin in the course of reverse transformation of Chinese hamster ovary cells by cyclic AMP. Proc Natl Acad Sci U S A. 1980 Feb;77(2):985–989. doi: 10.1073/pnas.77.2.985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Retsas S., Priestman T. J., Newton K. A., Westbury G. Evaluation of human lymphoblastoid interferon in advanced malignant melanoma. Cancer. 1983 Jan 15;51(2):273–276. doi: 10.1002/1097-0142(19830115)51:2<273::aid-cncr2820510218>3.0.co;2-k. [DOI] [PubMed] [Google Scholar]
- Ronnett G. V., Knutson V. P., Kohanski R. A., Simpson T. L., Lane M. D. Role of glycosylation in the processing of newly translated insulin proreceptor in 3T3-L1 adipocytes. J Biol Chem. 1984 Apr 10;259(7):4566–4575. [PubMed] [Google Scholar]
- Rosenbloom J., Feldman G., Freundlich B., Jimenez S. A. Transcriptional control of human diploid fibroblast collagen synthesis by gamma-interferon. Biochem Biophys Res Commun. 1984 Aug 30;123(1):365–372. doi: 10.1016/0006-291x(84)90422-4. [DOI] [PubMed] [Google Scholar]
- Ruddon R. W., Hanson C. A., Addison N. J. Synthesis and processing of human chorionic gonadotropin subunits in cultured choriocarcinoma cells. Proc Natl Acad Sci U S A. 1979 Oct;76(10):5143–5147. doi: 10.1073/pnas.76.10.5143. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shalaby M. R., Aggarwal B. B., Rinderknecht E., Svedersky L. P., Finkle B. S., Palladino M. A., Jr Activation of human polymorphonuclear neutrophil functions by interferon-gamma and tumor necrosis factors. J Immunol. 1985 Sep;135(3):2069–2073. [PubMed] [Google Scholar]
- Smith H. S., Riggs J. L., Mosesson M. W. Production of fibronectin by human epithelial cells in culture. Cancer Res. 1979 Oct;39(10):4138–4144. [PubMed] [Google Scholar]
- Stolpen A. H., Guinan E. C., Fiers W., Pober J. S. Recombinant tumor necrosis factor and immune interferon act singly and in combination to reorganize human vascular endothelial cell monolayers. Am J Pathol. 1986 Apr;123(1):16–24. [PMC free article] [PubMed] [Google Scholar]
- Tai T., Eisinger M., Ogata S., Lloyd K. O. Glycoproteins as differentiation markers in human malignant melanoma and melanocytes. Cancer Res. 1983 Jun;43(6):2773–2779. [PubMed] [Google Scholar]
- Talmadge J. E., Bowersox O., Tribble H., Lee S. H., Shepard H. M., Liggitt D. Toxicity of tumor necrosis factor is synergistic with gamma-interferon and can be reduced with cyclooxygenase inhibitors. Am J Pathol. 1987 Sep;128(3):410–425. [PMC free article] [PubMed] [Google Scholar]
- Timpl R., Rohde H., Robey P. G., Rennard S. I., Foidart J. M., Martin G. R. Laminin--a glycoprotein from basement membranes. J Biol Chem. 1979 Oct 10;254(19):9933–9937. [PubMed] [Google Scholar]
- Vaheri A., Mosher D. F. High molecular weight, cell surface-associated glycoprotein (fibronectin) lost in malignant transformation. Biochim Biophys Acta. 1978 Sep 18;516(1):1–25. doi: 10.1016/0304-419x(78)90002-1. [DOI] [PubMed] [Google Scholar]
- Vaheri A., Ruoslahti E. Fibroblast surface antigen produced but not retained by virus-transformed human cells. J Exp Med. 1975 Aug 1;142(2):530–535. doi: 10.1084/jem.142.2.530. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Varani J., Carey T. E., Fligiel S. E., McKeever P. E., Dixit V. Tumor type-specific differences in cell-substrate adhesion among human tumor cell lines. Int J Cancer. 1987 Mar 15;39(3):397–403. doi: 10.1002/ijc.2910390321. [DOI] [PubMed] [Google Scholar]
- Varani J., Dixit V. M., Fligiel S. E., McKeever P. E., Carey T. E. Thrombospondin-induced attachment and spreading of human squamous carcinoma cells. Exp Cell Res. 1986 Dec;167(2):376–390. doi: 10.1016/0014-4827(86)90178-3. [DOI] [PubMed] [Google Scholar]
- Varani J., Lovett E. J., 3rd, McCoy J. P., Jr, Shibata S., Maddox D. E., Goldstein I. J., Wicha M. Differential expression of a lamininlike substance by high- and low-metastatic tumor cells. Am J Pathol. 1983 Apr;111(1):27–34. [PMC free article] [PubMed] [Google Scholar]
- Yaar M., Woodley D. T., Gilchrest B. A. Human nevocellular nevus cells are surrounded by basement membrane components. Immunohistologic studies of human nevus cells and melanocytes in vivo and in vitro. Lab Invest. 1988 Feb;58(2):157–162. [PubMed] [Google Scholar]
- Yamada K. M., Olden K. Fibronectins--adhesive glycoproteins of cell surface and blood. Nature. 1978 Sep 21;275(5677):179–184. doi: 10.1038/275179a0. [DOI] [PubMed] [Google Scholar]
- Yamada K. M., Yamada S. S., Pastan I. Cell surface protein partially restores morphology, adhesiveness, and contact inhibition of movement to transformed fibroblasts. Proc Natl Acad Sci U S A. 1976 Apr;73(4):1217–1221. doi: 10.1073/pnas.73.4.1217. [DOI] [PMC free article] [PubMed] [Google Scholar]



