Skip to main content
The American Journal of Pathology logoLink to The American Journal of Pathology
. 1989 Apr;134(4):837–842.

Buffered formalin is the superior fixative for the detection of HPV DNA by in situ hybridization analysis.

G J Nuovo 1, R M Richart 1
PMCID: PMC1879784  PMID: 2539721

Abstract

In situ hybridization is used commonly for detection of human papillomavirus (HPV) DNA. There is little information, however, on whether the detection of HPV DNA by in situ hybridization can be affected by the way in which the tissue is fixed. To address this question, the authors compared the hybridization signal using this technique under low stringency conditions for several genital condylomata containing HPV 6 or 11 that were randomly subdivided and fixed in various fixatives for 16 hours. In all cases, the largest proportion of cells with koilocytotic atypia that had detectable HPV DNA was in buffered formalin-fixed tissue (80%), followed by tissue fixed in unbuffered formalin (70%), Hartman's solution (40%), and Bouin's solution (10%). After a high stringency wash, the greatest decrease in the overall hybridization signal was with tissue fixed in Bouin's solution; a minimal decrease was noted with tissue fixed in buffered formalin. Fixation in Bouin's solution for 2 hours gave in situ hybridization results comparable with buffered formalin fixation but with poorer cytologic detail. It is concluded that, of the fixatives studied, buffered formalin is superior for the detection of HPV DNA by in situ hybridization analysis.

Full text

PDF
837

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bedell M. A., Jones K. H., Laimins L. A. The E6-E7 region of human papillomavirus type 18 is sufficient for transformation of NIH 3T3 and rat-1 cells. J Virol. 1987 Nov;61(11):3635–3640. doi: 10.1128/jvi.61.11.3635-3640.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Crum C. P., Ikenberg H., Richart R. M., Gissman L. Human papillomavirus type 16 and early cervical neoplasia. N Engl J Med. 1984 Apr 5;310(14):880–883. doi: 10.1056/NEJM198404053101403. [DOI] [PubMed] [Google Scholar]
  3. Crum C. P., Nuovo G., Friedman D., Silverstein S. J. Accumulation of RNA homologous to human papillomavirus type 16 open reading frames in genital precancers. J Virol. 1988 Jan;62(1):84–90. doi: 10.1128/jvi.62.1.84-90.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Del Mistro A., Braunstein J. D., Halwer M., Koss L. G. Identification of human papillomavirus types in male urethral condylomata acuminata by in situ hybridization. Hum Pathol. 1987 Sep;18(9):936–940. doi: 10.1016/s0046-8177(87)80272-1. [DOI] [PubMed] [Google Scholar]
  5. Dubeau L., Chandler L. A., Gralow J. R., Nichols P. W., Jones P. A. Southern blot analysis of DNA extracted from formalin-fixed pathology specimens. Cancer Res. 1986 Jun;46(6):2964–2969. [PubMed] [Google Scholar]
  6. Fuchs P. G., Girardi F., Pfister H. Human papillomavirus DNA in normal, metaplastic, preneoplastic and neoplastic epithelia of the cervix uteri. Int J Cancer. 1988 Jan 15;41(1):41–45. doi: 10.1002/ijc.2910410109. [DOI] [PubMed] [Google Scholar]
  7. Goelz S. E., Hamilton S. R., Vogelstein B. Purification of DNA from formaldehyde fixed and paraffin embedded human tissue. Biochem Biophys Res Commun. 1985 Jul 16;130(1):118–126. doi: 10.1016/0006-291x(85)90390-0. [DOI] [PubMed] [Google Scholar]
  8. Gu J., Linnoila R. I., Seibel N. L., Gazdar A. F., Minna J. D., Brooks B. J., Hollis G. F., Kirsch I. R. A study of myc-related gene expression in small cell lung cancer by in situ hybridization. Am J Pathol. 1988 Jul;132(1):13–17. [PMC free article] [PubMed] [Google Scholar]
  9. Harper M. E., Marselle L. M., Gallo R. C., Wong-Staal F. Detection of lymphocytes expressing human T-lymphotropic virus type III in lymph nodes and peripheral blood from infected individuals by in situ hybridization. Proc Natl Acad Sci U S A. 1986 Feb;83(3):772–776. doi: 10.1073/pnas.83.3.772. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lorincz A. T., Temple G. F., Kurman R. J., Jenson A. B., Lancaster W. D. Oncogenic association of specific human papillomavirus types with cervical neoplasia. J Natl Cancer Inst. 1987 Oct;79(4):671–677. [PubMed] [Google Scholar]
  11. McAllister H. A., Rock D. L. Comparative usefulness of tissue fixatives for in situ viral nucleic acid hybridization. J Histochem Cytochem. 1985 Oct;33(10):1026–1032. doi: 10.1177/33.10.2995481. [DOI] [PubMed] [Google Scholar]
  12. Nagai N., Nuovo G., Friedman D., Crum C. P. Detection of papillomavirus nucleic acids in genital precancers with the in situ hybridization technique. Int J Gynecol Pathol. 1987;6(4):366–379. doi: 10.1097/00004347-198712000-00009. [DOI] [PubMed] [Google Scholar]
  13. Nuovo G. J., Nuovo M. A., Cottral S., Gordon S., Silverstein S. J., Crum C. P. Histological correlates of clinically occult human papillomavirus infection of the uterine cervix. Am J Surg Pathol. 1988 Mar;12(3):198–204. doi: 10.1097/00000478-198803000-00005. [DOI] [PubMed] [Google Scholar]
  14. Nuovo G. J., Silverstein S. J. Comparison of formalin, buffered formalin, and Bouin's fixation on the detection of human papillomavirus deoxyribonucleic acid from genital lesions. Lab Invest. 1988 Nov;59(5):720–724. [PubMed] [Google Scholar]
  15. Nuovo G., Crum C. P., Silverstein S. Papillomavirus infection of the uterine cervix. Microb Pathog. 1987 Aug;3(2):71–78. doi: 10.1016/0882-4010(87)90065-9. [DOI] [PubMed] [Google Scholar]
  16. Richart R. M. Causes and management of cervical intraepithelial neoplasia. Cancer. 1987 Oct 15;60(8 Suppl):1951–1959. doi: 10.1002/1097-0142(19901015)60:8+<1951::aid-cncr2820601505>3.0.co;2-u. [DOI] [PubMed] [Google Scholar]
  17. Tase T., Okagaki T., Clark B. A., Manias D. A., Ostrow R. S., Twiggs L. B., Faras A. J. Human papillomavirus types and localization in adenocarcinoma and adenosquamous carcinoma of the uterine cervix: a study by in situ DNA hybridization. Cancer Res. 1988 Feb 15;48(4):993–998. [PubMed] [Google Scholar]
  18. Wallace R. B., Shaffer J., Murphy R. F., Bonner J., Hirose T., Itakura K. Hybridization of synthetic oligodeoxyribonucleotides to phi chi 174 DNA: the effect of single base pair mismatch. Nucleic Acids Res. 1979 Aug 10;6(11):3543–3557. doi: 10.1093/nar/6.11.3543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Wilczynski S. P., Bergen S., Walker J., Liao S. Y., Pearlman L. F. Human papillomaviruses and cervical cancer: analysis of histopathologic features associated with different viral types. Hum Pathol. 1988 Jun;19(6):697–704. doi: 10.1016/s0046-8177(88)80176-x. [DOI] [PubMed] [Google Scholar]
  20. Winkler B., Crum C. P., Fujii T., Ferenczy A., Boon M., Braun L., Lancaster W. D., Richart R. M. Koilocytotic lesions of the cervix. The relationship of mitotic abnormalities to the presence of papillomavirus antigens and nuclear DNA content. Cancer. 1984 Mar 1;53(5):1081–1087. doi: 10.1002/1097-0142(19840301)53:5<1081::aid-cncr2820530511>3.0.co;2-l. [DOI] [PubMed] [Google Scholar]
  21. zur Hausen H. Papillomaviruses in human cancer. Cancer. 1987 May 15;59(10):1692–1696. doi: 10.1002/1097-0142(19870515)59:10<1692::aid-cncr2820591003>3.0.co;2-f. [DOI] [PubMed] [Google Scholar]

Articles from The American Journal of Pathology are provided here courtesy of American Society for Investigative Pathology

RESOURCES