Skip to main content
The American Journal of Pathology logoLink to The American Journal of Pathology
. 1989 Sep;135(3):439–445.

Expression of growth factor/receptor genes in postthymic T cell malignancies.

I J Su 1, M E Kadin 1
PMCID: PMC1879862  PMID: 2789474

Abstract

This study was undertaken to explain the molecular basis for the diverse pathology and clinical behavior of postthymic T cell malignancies. Total cellular RNAs were extracted from four HTLV-1 positive and ten HTLV-1-negative T cell lymphomas and cell lines, and investigated for homology with cloned DNA probes specific for interleukin-2 (IL-2), IL-2 receptor (IL-2R), transforming growth factor beta (TGF-beta), platelet-derived growth factor (PDGF), and epidermal growth factor receptor (EGF-R). Tumor cells associated with clinically high grade HTLV-1-positive adult T cell leukemia (ATL) and large cell morphology (T immunoblastic lymphomas) were found to have higher levels of expression of IL-2 and TGF-beta genes than low grade T cell neoplasms (mycosis fungoides and Sezary's syndrome). High expression of IL-2R gene was restricted to Ki-1-positive lymphomas and to one ATL. Cell lines corresponding to the advanced stage of a cutaneous T cell lymphoma (CTCL) showed enhanced expression of PDGF. Therefore, high grade T cell malignancies had consistently elevated expression of growth factor/receptor (GF/R) genes. Expression of EGF-R was negligible in all T cell malignancies. An inverse relationship was found between the expression of T cell antigen receptor (differentiation antigen) and GF/R (activation antigen) genes, accounting for the frequent aberrant expression of T cell antigens in high grade T cell lymphomas. The results suggest that post-thymic T cell malignancies derived from activated T cells produce and secrete GF, conferring a growth advantage on neoplastic T cells, and correlating well with their histologic subtype and clinical behavior.

Full text

PDF
439

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Deuel T. F., Huang J. S. Roles of growth factor activities in oncogenesis. Blood. 1984 Nov;64(5):951–958. [PubMed] [Google Scholar]
  2. Furley A. J., Mizutani S., Weilbaecher K., Dhaliwal H. S., Ford A. M., Chan L. C., Molgaard H. V., Toyonaga B., Mak T., van den Elsen P. Developmentally regulated rearrangement and expression of genes encoding the T cell receptor-T3 complex. Cell. 1986 Jul 4;46(1):75–87. doi: 10.1016/0092-8674(86)90861-5. [DOI] [PubMed] [Google Scholar]
  3. Hsu S. M., Raine L., Fanger H. Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures. J Histochem Cytochem. 1981 Apr;29(4):577–580. doi: 10.1177/29.4.6166661. [DOI] [PubMed] [Google Scholar]
  4. Jaffe E. S. Pathologic and clinical spectrum of post-thymic T-cell malignancies. Cancer Invest. 1984;2(5):413–426. doi: 10.3109/07357908409040316. [DOI] [PubMed] [Google Scholar]
  5. Kadin M. E., Sako D., Berliner N., Franklin W., Woda B., Borowitz M., Ireland K., Schweid A., Herzog P., Lange B. Childhood Ki-1 lymphoma presenting with skin lesions and peripheral lymphadenopathy. Blood. 1986 Nov;68(5):1042–1049. [PubMed] [Google Scholar]
  6. Kehrl J. H., Wakefield L. M., Roberts A. B., Jakowlew S., Alvarez-Mon M., Derynck R., Sporn M. B., Fauci A. S. Production of transforming growth factor beta by human T lymphocytes and its potential role in the regulation of T cell growth. J Exp Med. 1986 May 1;163(5):1037–1050. doi: 10.1084/jem.163.5.1037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Keller J. R., Mantel C., Sing G. K., Ellingsworth L. R., Ruscetti S. K., Ruscetti F. W. Transforming growth factor beta 1 selectively regulates early murine hematopoietic progenitors and inhibits the growth of IL-3-dependent myeloid leukemia cell lines. J Exp Med. 1988 Aug 1;168(2):737–750. doi: 10.1084/jem.168.2.737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Leof E. B., Proper J. A., Goustin A. S., Shipley G. D., DiCorleto P. E., Moses H. L. Induction of c-sis mRNA and activity similar to platelet-derived growth factor by transforming growth factor beta: a proposed model for indirect mitogenesis involving autocrine activity. Proc Natl Acad Sci U S A. 1986 Apr;83(8):2453–2457. doi: 10.1073/pnas.83.8.2453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lippman S. M., Miller T. P., Spier C. M., Slymen D. J., Grogan T. M. The prognostic significance of the immunotype in diffuse large-cell lymphoma: a comparative study of the T-cell and B-cell phenotype. Blood. 1988 Aug;72(2):436–441. [PubMed] [Google Scholar]
  10. Meuer S. C., Hussey R. E., Cantrell D. A., Hodgdon J. C., Schlossman S. F., Smith K. A., Reinherz E. L. Triggering of the T3-Ti antigen-receptor complex results in clonal T-cell proliferation through an interleukin 2-dependent autocrine pathway. Proc Natl Acad Sci U S A. 1984 Mar;81(5):1509–1513. doi: 10.1073/pnas.81.5.1509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Newcom S. R., Kadin M. E., Ansari A. A. Production of transforming growth factor-beta activity by Ki-1 positive lymphoma cells and analysis of its role in the regulation of Ki-1 positive lymphoma growth. Am J Pathol. 1988 Jun;131(3):569–577. [PMC free article] [PubMed] [Google Scholar]
  12. Niitsu Y., Urushizaki Y., Koshida Y., Terui K., Mahara K., Kohgo Y., Urushizaki I. Expression of TGF-beta gene in adult T cell leukemia. Blood. 1988 Jan;71(1):263–266. [PubMed] [Google Scholar]
  13. Reed J. C., Alpers J. D., Nowell P. C., Hoover R. G. Sequential expression of protooncogenes during lectin-stimulated mitogenesis of normal human lymphocytes. Proc Natl Acad Sci U S A. 1986 Jun;83(11):3982–3986. doi: 10.1073/pnas.83.11.3982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Salhany K. E., Cousar J. B., Greer J. P., Casey T. T., Fields J. P., Collins R. D. Transformation of cutaneous T cell lymphoma to large cell lymphoma. A clinicopathologic and immunologic study. Am J Pathol. 1988 Aug;132(2):265–277. [PMC free article] [PubMed] [Google Scholar]
  15. Shimoyama M., Ota K., Kikuchi M., Yunoki K., Konda S., Takatsuki K., Ichimaru M., Tominaga S., Tsugane S., Minato K. Major prognostic factors of adult patients with advanced T-cell lymphoma/leukemia. J Clin Oncol. 1988 Jul;6(7):1088–1097. doi: 10.1200/JCO.1988.6.7.1088. [DOI] [PubMed] [Google Scholar]
  16. Shipp M. A., Reinherz E. L. Differential expression of nuclear proto-oncogenes in T cells triggered with mitogenic and nonmitogenic T3 and T11 activation signals. J Immunol. 1987 Oct 1;139(7):2143–2148. [PubMed] [Google Scholar]
  17. Smith K. A. T-cell growth factor. Immunol Rev. 1980;51:337–357. doi: 10.1111/j.1600-065x.1980.tb00327.x. [DOI] [PubMed] [Google Scholar]
  18. Stiles C. D. The biological role of oncogenes--insights from platelet-derived growth factor: Rhoads Memorial Award lecture. Cancer Res. 1985 Nov;45(11 Pt 1):5215–5218. [PubMed] [Google Scholar]
  19. Su I. J., Balk S. P., Kadin M. E. Molecular basis for the aberrant expression of T cell antigens in postthymic T cell malignancies. Am J Pathol. 1988 Aug;132(2):192–198. [PMC free article] [PubMed] [Google Scholar]
  20. Su I. J., Wang C. H., Cheng A. L., Chen Y. C., Hsieh H. C., Chen C. J., Tien H. F., Woei-Tsay, Huang S. S., Hu C. Y. Characterization of the spectrum of postthymic T-cell malignancies in Taiwan. A clinicopathologic study of HTLV-1-positive and HTLV-1-negative cases. Cancer. 1988 May 15;61(10):2060–2070. doi: 10.1002/1097-0142(19880515)61:10<2060::aid-cncr2820611022>3.0.co;2-d. [DOI] [PubMed] [Google Scholar]
  21. Suchi T., Lennert K., Tu L. Y., Kikuchi M., Sato E., Stansfeld A. G., Feller A. C. Histopathology and immunohistochemistry of peripheral T cell lymphomas: a proposal for their classification. J Clin Pathol. 1987 Sep;40(9):995–1015. doi: 10.1136/jcp.40.9.995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Thomas P. S. Hybridization of denatured RNA transferred or dotted nitrocellulose paper. Methods Enzymol. 1983;100:255–266. doi: 10.1016/0076-6879(83)00060-9. [DOI] [PubMed] [Google Scholar]
  23. Umadome H., Uchiyama T., Hori T., Tamori S., Motoi T., Araki K., Uchino H. Close association between interleukin 2 receptor mRNA expression and human T cell leukemia/lymphoma virus type I viral RNA expression in short-term cultured leukemic cells from adult T cell leukemia patients. J Clin Invest. 1988 Jan;81(1):52–61. doi: 10.1172/JCI113309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Waldmann T. A. The structure, function, and expression of interleukin-2 receptors on normal and malignant lymphocytes. Science. 1986 May 9;232(4751):727–732. doi: 10.1126/science.3008337. [DOI] [PubMed] [Google Scholar]
  25. Waterfield M. D., Scrace G. T., Whittle N., Stroobant P., Johnsson A., Wasteson A., Westermark B., Heldin C. H., Huang J. S., Deuel T. F. Platelet-derived growth factor is structurally related to the putative transforming protein p28sis of simian sarcoma virus. Nature. 1983 Jul 7;304(5921):35–39. doi: 10.1038/304035a0. [DOI] [PubMed] [Google Scholar]
  26. Weinberg R. A. The action of oncogenes in the cytoplasm and nucleus. Science. 1985 Nov 15;230(4727):770–776. doi: 10.1126/science.2997917. [DOI] [PubMed] [Google Scholar]
  27. Westin E. H., Wong-Staal F., Gelmann E. P., Dalla-Favera R., Papas T. S., Lautenberger J. A., Eva A., Reddy E. P., Tronick S. R., Aaronson S. A. Expression of cellular homologues of retroviral onc genes in human hematopoietic cells. Proc Natl Acad Sci U S A. 1982 Apr;79(8):2490–2494. doi: 10.1073/pnas.79.8.2490. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Winberg C. D., Sheibani K., Krance R., Rappaport H. Peripheral T cell lymphoma: immunologic and cell-kinetic observations associated with morphological progression. Blood. 1985 Oct;66(4):980–989. [PubMed] [Google Scholar]
  29. Yodoi J., Uchiyama T. IL-2 receptor dysfunction and adult T-cell leukemia. Immunol Rev. 1986 Aug;92:135–156. doi: 10.1111/j.1600-065x.1986.tb01498.x. [DOI] [PubMed] [Google Scholar]

Articles from The American Journal of Pathology are provided here courtesy of American Society for Investigative Pathology

RESOURCES