Abstract
Purified radiolabeled fibrinogen and antithrombin III (ATIII) were injected intravenously into rabbits before a deendothelializing injury to the aorta, and allowed to circulate for 0.1 to 6 hours before exsanguination, excision of the aorta, and quantification of each protein/unit area of subendothelium (intima-media). Uptake of fibrinogen was rapid (saturation 10 minutes after injury was approximately 13.0 pmol/cm2) compared with that of ATIII (45 to 60 minutes; 3.5 to 4.3 pmol/cm2). Both proteins associated primarily (greater than 90%) with the subendothelium rather than the platelet monolayer. The avidity of the deendothelialized vessel of these proteins was measured after a 20-minute circulation time at various intervals after injury. Whereas turnover of fibrinogen was fairly constant (approximately 100% per hour), that of ATIII was maximal (approximately 200% per hour) at 1 hour, decreasing to approximately 105% per hour at 5 hours after injury. The profile of ATIII turnover mirrored that of thrombin released in vitro from the deendothelialized aorta up to 10 days after injury, whereas the uninjured aorta and the aorta deendothelialized ex vivo adsorbed fibrinogen poorly and released negligible thrombin. Pretreatment of the aorta, deendothelialized ex vivo with thrombin in vitro increased fibrinogen uptake significantly. It is possible that, after deendothelialization in vivo, fibrinogen adsorption is determined largely by thrombin generation at the vessel wall. ATIII binding is limited by the availability of binding sites in the subendothelium, although the rate of thrombin generation influences ATIII turnover.
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BECK E., DUCKERT F., ERNST M. The influence of fibrin stabilizing factor on the growth of fibroblasts in vitro and wound healing. Thromb Diath Haemorrh. 1961 Dec 15;6:485–491. [PubMed] [Google Scholar]
- Baumgartner H. R., Stemerman M. B., Spaet T. H. Adhesion of blood platelets to subendothelial surface: distinct from adhesion to collagen. Experientia. 1971 Mar 15;27(3):283–285. doi: 10.1007/BF02138148. [DOI] [PubMed] [Google Scholar]
- Baumgartner H. R., Studer A. Folgen des Gefässkatheterismus am normo- und hypercholesterinaemischen Kaninchen. Pathol Microbiol (Basel) 1966;29(4):393–405. [PubMed] [Google Scholar]
- CASPARY E. A., KEKWICK R. A. Some physicochemical properties of human fibrinogen. Biochem J. 1957 Sep;67(1):41–48. doi: 10.1042/bj0670041. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carlson T. H., Atencio A. C. Isolation and partial characterization of two distinct types of antithrombin III from rabbit. Thromb Res. 1982 Jul 1;27(1):23–34. doi: 10.1016/0049-3848(82)90274-2. [DOI] [PubMed] [Google Scholar]
- Carney D. H., Herbosa G. J., Stiernberg J., Bergmann J. S., Gordon E. A., Scott D., Fenton J. W., 2nd Double-signal hypothesis for thrombin initiation of cell proliferation. Semin Thromb Hemost. 1986 Jul;12(3):231–240. doi: 10.1055/s-2007-1003559. [DOI] [PubMed] [Google Scholar]
- Chemnitz J., Christensen B. C. Repair in arterial tissue. Demonstration of fibrinogen/fibrin in the normal and healing rabbit thoracic aorta by the indirect immunoperoxidase technique. Virchows Arch A Pathol Anat Histopathol. 1984;403(2):163–171. doi: 10.1007/BF00695232. [DOI] [PubMed] [Google Scholar]
- Cole C. W., Hagen P. O., Lucas J. F., Mikat E. M., O'Malley M. K., Radic Z. S., Makhoul R. G., McCann R. L. Association of polymorphonuclear leukocytes with sites of aortic catheter-induced injury in rabbits. Atherosclerosis. 1987 Oct;67(2-3):229–236. doi: 10.1016/0021-9150(87)90283-8. [DOI] [PubMed] [Google Scholar]
- Goldberg I. D., Stemerman M. B., Handin R. I. Vascular permeation of platelet factor 4 after endothelial injury. Science. 1980 Aug 1;209(4456):611–612. doi: 10.1126/science.6994228. [DOI] [PubMed] [Google Scholar]
- Grinnell F., Feld M., Minter D. Fibroblast adhesion to fibrinogen and fibrin substrata: requirement for cold-insoluble globulin (plasma fibronectin). Cell. 1980 Feb;19(2):517–525. doi: 10.1016/0092-8674(80)90526-7. [DOI] [PubMed] [Google Scholar]
- Groves H. M., Kinlough-Rathbone R. L., Richardson M., Jørgensen L., Moore S., Mustard J. F. Thrombin generation and fibrin formation following injury to rabbit neointima. Studies of vessel wall reactivity and platelet survival. Lab Invest. 1982 Jun;46(6):605–612. [PubMed] [Google Scholar]
- Groves H. M., Kinlough-Rathbone R. L., Richardson M., Moore S., Mustard J. F. Platelet interaction with damaged rabbit aorta. Lab Invest. 1979 Feb;40(2):194–200. [PubMed] [Google Scholar]
- Hatton M. W., Berry L. R., Regoeczi E. Inhibition of thrombin by antithrombin III in the presence of certain glycosaminoglycans found in the mammalian aorta. Thromb Res. 1978 Oct;13(4):655–670. doi: 10.1016/0049-3848(78)90155-x. [DOI] [PubMed] [Google Scholar]
- Hatton M. W., Moar S. L. A role for pericellular proteoglycan in the binding of thrombin or antithrombin III by the blood vessel endothelium? The effects of proteoglycan-degrading enzymes and glycosaminoglycan-binding proteins on 125I-thrombin binding by the rabbit thoracic aorta in vitro. Thromb Haemost. 1985 Apr 22;53(2):228–234. [PubMed] [Google Scholar]
- Hatton M. W., Moar S. L., Richardson M. Behavior of plasminogen at the luminal surface of the normal and deendothelialized rabbit aorta in vivo and in vitro. Blood. 1988 May;71(5):1260–1267. [PubMed] [Google Scholar]
- Hatton M. W., Moar S. L., Richardson M. Evidence that rabbit 125I-antithrombin III binds to proteoheparan sulphate at the subendothelium of the rabbit aorta in vitro. Blood Vessels. 1988;25(1):12–27. doi: 10.1159/000158717. [DOI] [PubMed] [Google Scholar]
- Hatton M. W., Moar S. L., Richardson M. On the interaction of rabbit antithrombin III with the luminal surface of the normal and deendothelialized rabbit thoracic aorta in vitro. Blood. 1986 Apr;67(4):878–886. [PubMed] [Google Scholar]
- Hatton M. W., Moar S. L. Uptake and catabolism of 125I-thrombin by the rabbit thoracic aorta in vitro: permeability of the endothelium, intima-media and adventitial layers. Thromb Haemost. 1984 Oct 31;52(2):105–111. [PubMed] [Google Scholar]
- Hatton M. W., Regoeczi E. The inactivation of thrombin and plasmin by antithrombin III in the presence of sepharose-heparin. Thromb Res. 1977 May;10(5):645–660. doi: 10.1016/0049-3848(77)90047-0. [DOI] [PubMed] [Google Scholar]
- Hatton M. W. Studies on the coagulant enzyme from Agkistrodon rhodostoma venom. Isolation and some properties of the enzyme. Biochem J. 1973 Apr;131(4):799–807. doi: 10.1042/bj1310799. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jorgensen L., Packham M. A., Rowsell H. C., Mustard J. F. Deposition of formed elements of blood on the intima and signs of intimal injury in the aorta of rabbit, pig, and man. Lab Invest. 1972 Sep;27(3):341–350. [PubMed] [Google Scholar]
- Kettner C., Shaw E. D-Phe-Pro-ArgCH2C1-A selective affinity label for thrombin. Thromb Res. 1979;14(6):969–973. doi: 10.1016/0049-3848(79)90014-8. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lawrie J. S., Ross J., Kemp G. D. Purification of fibrinogen and the separation of its degradation products in the presence of calcium ions [proceedings]. Biochem Soc Trans. 1979 Aug;7(4):693–694. doi: 10.1042/bst0070693. [DOI] [PubMed] [Google Scholar]
- LeBoeuf R. D., Raja R. H., Fuller G. M., Weigel P. H. Human fibrinogen specifically binds hyaluronic acid. J Biol Chem. 1986 Sep 25;261(27):12586–12592. [PubMed] [Google Scholar]
- Leung L. L., Nachman R. L. Complex formation of platelet thrombospondin with fibrinogen. J Clin Invest. 1982 Sep;70(3):542–549. doi: 10.1172/JCI110646. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lundblad R. L., Uhteg L. C., Vogel C. N., Kingdon H. S., Mann K. G. Preparation and partial characterization of two forms of bovine thrombin. Biochem Biophys Res Commun. 1975 Sep 16;66(2):482–489. doi: 10.1016/0006-291x(75)90536-7. [DOI] [PubMed] [Google Scholar]
- McKee P. A., Mattock P., Hill R. L. Subunit structure of human fibrinogen, soluble fibrin, and cross-linked insoluble fibrin. Proc Natl Acad Sci U S A. 1970 Jul;66(3):738–744. doi: 10.1073/pnas.66.3.738. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pugatch E. M., Saunders A. M. A new technique for making häutchen preparations of unfixed aortic endothelium. J Atheroscler Res. 1968 Jul-Aug;8(4):735–738. doi: 10.1016/s0368-1319(68)80032-8. [DOI] [PubMed] [Google Scholar]
- REGOECZI E., REGOECZI G. E., MCFARLANE A. S. RELATION BETWEEN RATE OF CATABOLISM, PLASMA CONCENTRATION AND POOL SIZE OF FIBRINOGEN. Pflugers Arch Gesamte Physiol Menschen Tiere. 1964 Mar 12;279:17–25. doi: 10.1007/BF00363316. [DOI] [PubMed] [Google Scholar]
- Rosenberg R. D., Damus P. S. The purification and mechanism of action of human antithrombin-heparin cofactor. J Biol Chem. 1973 Sep 25;248(18):6490–6505. [PubMed] [Google Scholar]
- Spaet T. H., Stemerman M. B., Veith F. J., Lejnieks I. Intimal injury and regrowth in the rabbit aorta; medial smooth muscle cells as a source of neointima. Circ Res. 1975 Jan;36(1):58–70. doi: 10.1161/01.res.36.1.58. [DOI] [PubMed] [Google Scholar]
- Straughn W., 3rd, Wagner R. H. A simple method for preparing fibrinogen. Thromb Diath Haemorrh. 1966 Jul 31;16(1):198–206. [PubMed] [Google Scholar]