Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1993 Aug;37(8):1624–1629. doi: 10.1128/aac.37.8.1624

Detection of tetracyclines and efflux pump inhibitors.

D M Rothstein 1, M McGlynn 1, V Bernan 1, J McGahren 1, J Zaccardi 1, N Cekleniak 1, K P Bertrand 1
PMCID: PMC188031  PMID: 8215274

Abstract

Screening assays for the detection of tetracyclines and inhibitors of tetracycline efflux pumps are described. The tetracycline assay is based on the observation that the tetA(B) gene encoding the efflux pump of transposon Tn10 is induced by tetracycline. The Escherichia coli strain designed to detect tetracyclines contains a single copy of a tetA(B)-lacZ transcriptional fusion integrated into the chromosome and the tetR gene encoding the tetracycline repressor on a plasmid. The assay specifically detects tetracyclines of distinct structures, but not other classes of drugs. A strain capable of detecting inhibitors of the TetA(B) efflux pump contained the tetA(B)-lacZ fusion and, in addition, a tetA(B) structural gene lacking its transcriptional regulatory signals which mediated resistance to only 5 micrograms of tetracycline per ml. This strain was more refractory to induction by tetracycline because of the action of the pump. Inhibitors were detected in two ways: (i) beta-galactosidase induction in the presence of 5 ng of tetracycline per ml, a subinducing concentration, and (ii) growth inhibition in the presence of 5 micrograms of tetracycline per ml. A strain designed to detect inhibitors of the Tet(K) efflux pump from Staphylococcus aureus was constructed by substituting the tet(K) structural gene for the tetA(B) gene. Nocardamine and other siderophores were found to interfere with the action of tetracycline efflux pumps.

Full text

PDF
1624

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bertrand K. P., Postle K., Wray L. V., Jr, Reznikoff W. S. Overlapping divergent promoters control expression of Tn10 tetracycline resistance. Gene. 1983 Aug;23(2):149–156. doi: 10.1016/0378-1119(83)90046-x. [DOI] [PubMed] [Google Scholar]
  2. Bochner B. R., Huang H. C., Schieven G. L., Ames B. N. Positive selection for loss of tetracycline resistance. J Bacteriol. 1980 Aug;143(2):926–933. doi: 10.1128/jb.143.2.926-933.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chopra I., Hacker K., Misulovin Z., Rothstein D. M. Sensitive biological detection method for tetracyclines using a tetA-lacZ fusion system. Antimicrob Agents Chemother. 1990 Jan;34(1):111–116. doi: 10.1128/aac.34.1.111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chopra I., Hawkey P. M., Hinton M. Tetracyclines, molecular and clinical aspects. J Antimicrob Chemother. 1992 Mar;29(3):245–277. doi: 10.1093/jac/29.3.245. [DOI] [PubMed] [Google Scholar]
  5. Degenkolb J., Takahashi M., Ellestad G. A., Hillen W. Structural requirements of tetracycline-Tet repressor interaction: determination of equilibrium binding constants for tetracycline analogs with the Tet repressor. Antimicrob Agents Chemother. 1991 Aug;35(8):1591–1595. doi: 10.1128/aac.35.8.1591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Elespuru R. K., White R. J. Biochemical prophage induction assay: a rapid test for antitumor agents that interact with DNA. Cancer Res. 1983 Jun;43(6):2819–2830. [PubMed] [Google Scholar]
  7. Guay G. G., Rothstein D. M. Expression of the tetK gene from Staphylococcus aureus in Escherichia coli: comparison of substrate specificities of TetA(B), TetA(C), and TetK efflux proteins. Antimicrob Agents Chemother. 1993 Feb;37(2):191–198. doi: 10.1128/aac.37.2.191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hillen W., Schollmeier K., Gatz C. Control of expression of the Tn10-encoded tetracycline resistance operon. II. Interaction of RNA polymerase and TET repressor with the tet operon regulatory region. J Mol Biol. 1984 Jan 15;172(2):185–201. doi: 10.1016/s0022-2836(84)80037-6. [DOI] [PubMed] [Google Scholar]
  9. Jorgensen R. A., Reznikoff W. S. Organization of structural and regulatory genes that mediate tetracycline resistance in transposon Tn10. J Bacteriol. 1979 Jun;138(3):705–714. doi: 10.1128/jb.138.3.705-714.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kirsch D. R., Lai M. H., McCullough J., Gillum A. M. The use of beta-galactosidase gene fusions to screen for antibacterial antibiotics. J Antibiot (Tokyo) 1991 Feb;44(2):210–217. doi: 10.7164/antibiotics.44.210. [DOI] [PubMed] [Google Scholar]
  11. Levy S. B. Evolution and spread of tetracycline resistance determinants. J Antimicrob Chemother. 1989 Jul;24(1):1–3. doi: 10.1093/jac/24.1.1. [DOI] [PubMed] [Google Scholar]
  12. Levy S. B., McMurry L. Detection of an inducible membrane protein associated with R-factor-mediated tetracycline resistance. Biochem Biophys Res Commun. 1974 Feb 27;56(4):1060–1068. doi: 10.1016/s0006-291x(74)80296-2. [DOI] [PubMed] [Google Scholar]
  13. Osburne M. S., Maiese W. M., Greenstein M. In vitro inhibition of bacterial DNA gyrase by cinodine, a glycocinnamoylspermidine antibiotic. Antimicrob Agents Chemother. 1990 Jul;34(7):1450–1452. doi: 10.1128/aac.34.7.1450. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Rothstein D. M., Pahel G., Tyler B., Magasanik B. Regulation of expression from the glnA promoter of Escherichia coli in the absence of glutamine synthetase. Proc Natl Acad Sci U S A. 1980 Dec;77(12):7372–7376. doi: 10.1073/pnas.77.12.7372. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Salyers A. A., Speer B. S., Shoemaker N. B. New perspectives in tetracycline resistance. Mol Microbiol. 1990 Jan;4(1):151–156. doi: 10.1111/j.1365-2958.1990.tb02025.x. [DOI] [PubMed] [Google Scholar]
  16. Schwyn B., Neilands J. B. Universal chemical assay for the detection and determination of siderophores. Anal Biochem. 1987 Jan;160(1):47–56. doi: 10.1016/0003-2697(87)90612-9. [DOI] [PubMed] [Google Scholar]
  17. Smith L. D., Bertrand K. P. Mutations in the Tn10 tet repressor that interfere with induction. Location of the tetracycline-binding domain. J Mol Biol. 1988 Oct 20;203(4):949–959. doi: 10.1016/0022-2836(88)90120-9. [DOI] [PubMed] [Google Scholar]
  18. Speer B. S., Shoemaker N. B., Salyers A. A. Bacterial resistance to tetracycline: mechanisms, transfer, and clinical significance. Clin Microbiol Rev. 1992 Oct;5(4):387–399. doi: 10.1128/cmr.5.4.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Wray L. V., Jr, Jorgensen R. A., Reznikoff W. S. Identification of the tetracycline resistance promoter and repressor in transposon Tn10. J Bacteriol. 1981 Aug;147(2):297–304. doi: 10.1128/jb.147.2.297-304.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES