Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1993 Aug;37(8):1701–1703. doi: 10.1128/aac.37.8.1701

Inhibition of Toxoplasma gondii protein synthesis by azithromycin.

J Blais 1, V Garneau 1, S Chamberland 1
PMCID: PMC188046  PMID: 8215287

Abstract

Azithromycin was shown to specifically inhibit the protein synthesis of Toxoplasma gondii in experimental systems by using free tachyzoites and T. gondii-infected mouse macrophages. RNA synthesis of the parasite was not affected by azithromycin. Inhibition of protein synthesis was also proportional to the relative anti-Toxoplasma activity of three macrolides.

Full text

PDF
1701

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bright G. M., Nagel A. A., Bordner J., Desai K. A., Dibrino J. N., Nowakowska J., Vincent L., Watrous R. M., Sciavolino F. C., English A. R. Synthesis, in vitro and in vivo activity of novel 9-deoxo-9a-AZA-9a-homoerythromycin A derivatives; a new class of macrolide antibiotics, the azalides. J Antibiot (Tokyo) 1988 Aug;41(8):1029–1047. doi: 10.7164/antibiotics.41.1029. [DOI] [PubMed] [Google Scholar]
  2. Chamberland S., Current W. L. Use of mouse macrophage cell lines for in vitro propagation of Toxoplasma gondii RH tachyzoites. Proc Soc Exp Biol Med. 1991 Jun;197(2):150–157. doi: 10.3181/00379727-197-43237. [DOI] [PubMed] [Google Scholar]
  3. Chamberland S., Kirst H. A., Current W. L. Comparative activity of macrolides against Toxoplasma gondii demonstrating utility of an in vitro microassay. Antimicrob Agents Chemother. 1991 May;35(5):903–909. doi: 10.1128/aac.35.5.903. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Decoster A., Darcy F., Capron A. Recognition of Toxoplasma gondii excreted and secreted antigens by human sera from acquired and congenital toxoplasmosis: identification of markers of acute and chronic infection. Clin Exp Immunol. 1988 Sep;73(3):376–382. [PMC free article] [PubMed] [Google Scholar]
  5. Gladue R. P., Bright G. M., Isaacson R. E., Newborg M. F. In vitro and in vivo uptake of azithromycin (CP-62,993) by phagocytic cells: possible mechanism of delivery and release at sites of infection. Antimicrob Agents Chemother. 1989 Mar;33(3):277–282. doi: 10.1128/aac.33.3.277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gladue R. P., Snider M. E. Intracellular accumulation of azithromycin by cultured human fibroblasts. Antimicrob Agents Chemother. 1990 Jun;34(6):1056–1060. doi: 10.1128/aac.34.6.1056. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hassan H. F., Coombs G. H. Purine and pyrimidine metabolism in parasitic protozoa. FEMS Microbiol Rev. 1988 Feb;4(1):47–83. doi: 10.1111/j.1574-6968.1988.tb02708.x-i1. [DOI] [PubMed] [Google Scholar]
  8. Kirst H. A., Sides G. D. New directions for macrolide antibiotics: structural modifications and in vitro activity. Antimicrob Agents Chemother. 1989 Sep;33(9):1413–1418. doi: 10.1128/aac.33.9.1413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Luft B. J. In vivo and in vitro activity of roxithromycin against Toxoplasma gondii in mice. Eur J Clin Microbiol. 1987 Aug;6(4):479–481. doi: 10.1007/BF02013115. [DOI] [PubMed] [Google Scholar]
  10. Pfefferkorn E. R., Pfefferkorn L. C. Specific labeling of intracellular Toxoplasma gondii with uracil. J Protozool. 1977 Aug;24(3):449–453. doi: 10.1111/j.1550-7408.1977.tb04774.x. [DOI] [PubMed] [Google Scholar]
  11. Retsema J., Girard A., Schelkly W., Manousos M., Anderson M., Bright G., Borovoy R., Brennan L., Mason R. Spectrum and mode of action of azithromycin (CP-62,993), a new 15-membered-ring macrolide with improved potency against gram-negative organisms. Antimicrob Agents Chemother. 1987 Dec;31(12):1939–1947. doi: 10.1128/aac.31.12.1939. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES