Skip to main content
The American Journal of Pathology logoLink to The American Journal of Pathology
. 1988 Apr;131(1):19–28.

Diagnosis of rhabdomyosarcomas with HHF35, a monoclonal antibody directed against muscle actins.

R A Schmidt 1, R Cone 1, J E Haas 1, A M Gown 1
PMCID: PMC1880579  PMID: 3354641

Abstract

The authors have recently developed a monoclonal antibody, HHF35, that recognizes the muscle-specific isoforms of actin. To determine its potential usefulness in the differential diagnosis of "small, round, blue cell" tumors of childhood, they immunolabeled formalinor B-5-fixed tissue sections from known cases of rhabdomyosarcoma or rhabdomyoma (30), neuroblastoma (9), retinoblastoma (2), and Ewing's sarcoma (9) with HHF35 and with antibodies to creatine kinase M, myoglobin, vimentin, and neuron-specific enolase. HHF35 reacted with 29 of 30 cases of rhabdomyosarcoma, whereas antibodies to creatine kinase M and myoglobin were positive on only 12 and 7 tumors, respectively. HHF35 did not react with any case of neuroblastoma, retinoblastoma, or Ewing's sarcoma when the antibody diluent contained 50 mM EDTA. These results indicate that HHF35 is a highly sensitive and specific marker for myogenic differentiation and that it will be useful in the differential diagnosis of rhabdomyosarcomas.

Full text

PDF
19

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altmannsberger M., Osborn M., Treuner J., Hölscher A., Weber K., Shauer A. Diagnosis of human childhood rhabdomyosarcoma of antibodies to desmin, the structural protein of muscle specific intermediate filaments. Virchows Arch B Cell Pathol Incl Mol Pathol. 1982;39(2):203–215. doi: 10.1007/BF02892848. [DOI] [PubMed] [Google Scholar]
  2. Altmannsberger M., Weber K., Droste R., Osborn M. Desmin is a specific marker for rhabdomyosarcomas of human and rat origin. Am J Pathol. 1985 Jan;118(1):85–95. [PMC free article] [PubMed] [Google Scholar]
  3. Bandman E., Matsuda R., Strohman R. C. Developmental appearance of myosin heavy and light chain isoforms in vivo and in vitro in chicken skeletal muscle. Dev Biol. 1982 Oct;93(2):508–518. doi: 10.1016/0012-1606(82)90138-5. [DOI] [PubMed] [Google Scholar]
  4. Brooks J. J. Immunohistochemistry of soft tissue tumors. Myoglobin as a tumor marker for rhabdomyosarcoma. Cancer. 1982 Nov 1;50(9):1757–1763. doi: 10.1002/1097-0142(19821101)50:9<1757::aid-cncr2820500919>3.0.co;2-5. [DOI] [PubMed] [Google Scholar]
  5. Darbyshire P. J., Bourne S. P., Allan P. M., Berry J., Oakhill A., Kemshead J. T., Coakham H. B. The use of a panel of monoclonal antibodies in pediatric oncology. Cancer. 1987 Feb 15;59(4):726–730. doi: 10.1002/1097-0142(19870215)59:4<726::aid-cncr2820590411>3.0.co;2-v. [DOI] [PubMed] [Google Scholar]
  6. Daubas P., Caput D., Buckingham M., Gros F. A comparison between the synthesis of contractile proteins and the accumulation of their translatable mRNAs during calf myoblast differentiation. Dev Biol. 1981 May;84(1):133–143. doi: 10.1016/0012-1606(81)90377-8. [DOI] [PubMed] [Google Scholar]
  7. Devlin R. B., Emerson C. P., Jr Coordinate regulation of contractile protein synthesis during myoblast differentiation. Cell. 1978 Apr;13(4):599–611. doi: 10.1016/0092-8674(78)90211-8. [DOI] [PubMed] [Google Scholar]
  8. Eusebi V., Bondi A., Rosai J. Immunohistochemical localization of myoglobin in nonmuscular cells. Am J Surg Pathol. 1984 Jan;8(1):51–55. doi: 10.1097/00000478-198401000-00005. [DOI] [PubMed] [Google Scholar]
  9. Garrels J. I., Gibson W. Identification and characterization of multiple forms of actin. Cell. 1976 Dec;9(4 Pt 2):793–805. doi: 10.1016/0092-8674(76)90142-2. [DOI] [PubMed] [Google Scholar]
  10. Gonazlez-Crussi F., Black-Schaffer S. Rhabdomyosarcoma of infancy and childhood. Problems of morphologic classification. Am J Surg Pathol. 1979 Apr;3(2):157–171. doi: 10.1097/00000478-197904000-00008. [DOI] [PubMed] [Google Scholar]
  11. Heywood S. M., Thibault M. C., Siegel E. Control of gene expression in muscle development. Cell Muscle Motil. 1983;3:157–193. doi: 10.1007/978-1-4615-9296-9_6. [DOI] [PubMed] [Google Scholar]
  12. Jansson E., Sylvén C., Nordevang E. Myoglobin in the quadriceps femoris muscle of competitive cyclists and untrained men. Acta Physiol Scand. 1982 Apr;114(4):627–629. doi: 10.1111/j.1748-1716.1982.tb07035.x. [DOI] [PubMed] [Google Scholar]
  13. Jong A. S., van Vark M., Albus-Lutter C. E., van Raamsdonk W., Voûte P. A. Myosin and myoglobin as tumor markers in the diagnosis of rhabdomyosarcoma. A comparative study. Am J Surg Pathol. 1984 Jul;8(7):521–528. doi: 10.1097/00000478-198407000-00004. [DOI] [PubMed] [Google Scholar]
  14. Kahn H. J., Yeger H., Kassim O., Jorgensen A. O., MacLennan D. H., Baumal R., Smith C. R., Phillips M. J. Immunohistochemical and electron microscopic assessment of childhood rhabdomyosarcoma. Increased frequency of diagnosis over routine histologic methods. Cancer. 1983 May 15;51(10):1897–1903. doi: 10.1002/1097-0142(19830515)51:10<1897::aid-cncr2820511023>3.0.co;2-7. [DOI] [PubMed] [Google Scholar]
  15. Miettinen M., Lehto V. P., Badley R. A., Virtanen I. Alveolar rhabdomyosarcoma. Demonstration of the muscle type of intermediate filament protein, desmin, as a diagnostic aid. Am J Pathol. 1982 Aug;108(2):246–251. [PMC free article] [PubMed] [Google Scholar]
  16. Molenaar W. M., Oosterhuis J. W., Oosterhuis A. M., Ramaekers F. C. Mesenchymal and muscle-specific intermediate filaments (vimentin and desmin) in relation to differentiation in childhood rhabdomyosarcomas. Hum Pathol. 1985 Aug;16(8):838–843. doi: 10.1016/s0046-8177(85)80256-2. [DOI] [PubMed] [Google Scholar]
  17. Mukai M., Iri H., Torikata C., Kageyama K., Morikawa Y., Shimizu K. Immunoperoxidase demonstration of a new muscle protein (Z-protein) in myogenic tumors as a diagnostic aid. Am J Pathol. 1984 Jan;114(1):164–170. [PMC free article] [PubMed] [Google Scholar]
  18. Osborn M., Hill C., Altmannsberger M., Weber K. Monoclonal antibodies to titin in conjunction with antibodies to desmin separate rhabdomyosarcomas from other tumor types. Lab Invest. 1986 Jul;55(1):101–108. [PubMed] [Google Scholar]
  19. Potter J. D. The content of troponin, tropomyosin, actin, and myosin in rabbit skeletal muscle myofibrils. Arch Biochem Biophys. 1974 Jun;162(2):436–441. doi: 10.1016/0003-9861(74)90202-1. [DOI] [PubMed] [Google Scholar]
  20. Royds J. A., Variend S., Timperley W. R., Taylor C. B. Comparison of beta enolase and myoglobin as histological markers of rhabdomyosarcoma. J Clin Pathol. 1985 Nov;38(11):1258–1260. doi: 10.1136/jcp.38.11.1258. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Schiaffino S., Gorza L., Sartore S., Saggin L., Carli M. Embryonic myosin heavy chain as a differentiation marker of developing human skeletal muscle and rhabdomyosarcoma. A monoclonal antibody study. Exp Cell Res. 1986 Mar;163(1):211–220. doi: 10.1016/0014-4827(86)90574-4. [DOI] [PubMed] [Google Scholar]
  22. Scupham R., Gilbert E. F., Wilde J., Wiedrich T. A. Immunohistochemical studies of rhabdomyosarcoma. Arch Pathol Lab Med. 1986 Sep;110(9):818–821. [PubMed] [Google Scholar]
  23. Shani M., Zevin-Sonkin D., Saxel O., Carmon Y., Katcoff D., Nudel U., Yaffe D. The correlation between the synthesis of skeletal muscle actin, myosin heavy chain, and myosin light chain and the accumulation of corresponding mRNA sequences during myogenesis. Dev Biol. 1981 Sep;86(2):483–492. doi: 10.1016/0012-1606(81)90206-2. [DOI] [PubMed] [Google Scholar]
  24. Tsukada T., McNutt M. A., Ross R., Gown A. M. HHF35, a muscle actin-specific monoclonal antibody. II. Reactivity in normal, reactive, and neoplastic human tissues. Am J Pathol. 1987 May;127(2):389–402. [PMC free article] [PubMed] [Google Scholar]
  25. Tsukada T., Tippens D., Gordon D., Ross R., Gown A. M. HHF35, a muscle-actin-specific monoclonal antibody. I. Immunocytochemical and biochemical characterization. Am J Pathol. 1987 Jan;126(1):51–60. [PMC free article] [PubMed] [Google Scholar]
  26. Wang K. Sarcomere-associated cytoskeletal lattices in striated muscle. Review and hypothesis. Cell Muscle Motil. 1985;6:315–369. doi: 10.1007/978-1-4757-4723-2_10. [DOI] [PubMed] [Google Scholar]
  27. Yates L. D., Greaser M. L. Troponin subunit stoichiometry and content in rabbit skeletal muscle and myofibrils. J Biol Chem. 1983 May 10;258(9):5770–5774. [PubMed] [Google Scholar]
  28. de Jong A. S., van Kessel-van Vark M., Albus-Lutter C. E., Voûte P. A. Creatine kinase subunits M and B as markers in the diagnosis of poorly differentiated rhabdomyosarcomas in children. Hum Pathol. 1985 Sep;16(9):924–928. doi: 10.1016/s0046-8177(85)80131-3. [DOI] [PubMed] [Google Scholar]
  29. de Jong A. S., van Kessel-van Vark M., Albus-Lutter C. E., van Raamsdonk W., Voûte P. A. Skeletal muscle actin as tumor marker in the diagnosis of rhabdomyosarcoma in childhood. Am J Surg Pathol. 1985 Jul;9(7):467–474. doi: 10.1097/00000478-198507000-00001. [DOI] [PubMed] [Google Scholar]

Articles from The American Journal of Pathology are provided here courtesy of American Society for Investigative Pathology

RESOURCES