Abstract
Unesterified cholesterol-rich lipid particles were isolated from human and cholesterol-fed rabbit aortas. These particles have been previously reported to constitute the initial lipid deposition in atherosclerotic lesion development. Purification of the particles was accomplished with microfiltration, gel filtration chromatography, and density gradient centrifugation. Particles from both human and rabbit aortas had a density of between 1.02 g/ml and 1.08 g/ml with a peak at d = 1.036 g/ml. These particles had a high molar ratio of unesterified cholesterol to phospholipid (2.4:1 in rabbit, 2.6:1 in human) and a high percentage of their cholesterol in an unesterified form (82% in rabbit, 76% in human). The particles had diameters between 700 and 3000 A and showed unilamellar and multilamellar structures. Freeze-fractured particles had smooth fracture faces and sometimes contained a smooth-surfaced core. Upon incubation with filipin, particles showed typical filipin-sterol complexes, demonstrating the presence of unesterified cholesterol. The particles we have isolated may constitute an early pathologic form of accumulated cholesterol in developing lesions and may represent a degradation product of infiltrated plasma low-density lipoprotein.
Full text
PDF










Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Amanuma-Muto K., Kanaseki T., Imanaka T., Ohkuma S., Takano T. Lipid composition of low-density lysosomal membrane fraction prepared from atheromatous aorta of cholesterol-fed rabbits. Biochem Int. 1983 Jul;7(1):107–114. [PubMed] [Google Scholar]
- Amanuma K., Kanaseki T., Ikeuchi Y., Ohkuma S., Takano T. Studies on fine structure and location of lipids in quick-freeze replicas of atherosclerotic aorta of WHHL rabbits. Virchows Arch A Pathol Anat Histopathol. 1986;410(3):231–238. doi: 10.1007/BF00710829. [DOI] [PubMed] [Google Scholar]
- BOTTCHER C. J., WOODFORD F. P. Chemical changes in the arterial wall associated with atherosclerosis. Fed Proc. 1962 Jul-Aug;21(4):15–19. [PubMed] [Google Scholar]
- BUCK R. C., ROSSITER R. J. Lipids of normal and atherosclerotic aortas; a chemical study. AMA Arch Pathol. 1951 Feb;51(2):224–237. [PubMed] [Google Scholar]
- Beknke O., Tranum-Jensen J., van Deurs B. Filipin as a cholesterol probe. I. Morphology of filipin-cholesterol interaction in lipid model systems. Eur J Cell Biol. 1984 Nov;35(2):189–199. [PubMed] [Google Scholar]
- Blumenkrantz N., Asboe-Hansen G. New method for quantitative determination of uronic acids. Anal Biochem. 1973 Aug;54(2):484–489. doi: 10.1016/0003-2697(73)90377-1. [DOI] [PubMed] [Google Scholar]
- Börnig H., Geyer G. Staining of cholesterol with the fluorescent antibiotic "filipin". Acta Histochem. 1974;50(1):110–115. [PubMed] [Google Scholar]
- Chalvardjian A., Rudnicki E. Determination of lipid phosphorus in the nanomolar range. Anal Biochem. 1970 Jul;36(1):225–226. doi: 10.1016/0003-2697(70)90352-0. [DOI] [PubMed] [Google Scholar]
- Collins J. J., Phillips M. C. The stability and structure of cholesterol-rich codispersions of cholesterol and phosphatidylcholine. J Lipid Res. 1982 Feb;23(2):291–298. [PubMed] [Google Scholar]
- FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
- Gamble W., Vaughan M., Kruth H. S., Avigan J. Procedure for determination of free and total cholesterol in micro- or nanogram amounts suitable for studies with cultured cells. J Lipid Res. 1978 Nov;19(8):1068–1070. [PubMed] [Google Scholar]
- Goldstein J. L., Brown M. S. The low-density lipoprotein pathway and its relation to atherosclerosis. Annu Rev Biochem. 1977;46:897–930. doi: 10.1146/annurev.bi.46.070177.004341. [DOI] [PubMed] [Google Scholar]
- Herbert P. N., Shulman R. S., Levy R. I., Fredrickson D. S. Fractionation of the C-apoproteins from human plasma very low density lipoproteins. J Biol Chem. 1973 Jul 25;248(14):4941–4946. [PubMed] [Google Scholar]
- Hoff H. F., Bradley W. A., Heideman C. L., Gaubatz J. W., Karagas M. D., Gotto A. M., Jr Characterization of low density lipoprotein-like particle in the human aorta from grossly normal and atherosclerotic regions. Biochim Biophys Acta. 1979 May 25;573(2):361–374. doi: 10.1016/0005-2760(79)90069-9. [DOI] [PubMed] [Google Scholar]
- Hoff H. F., Gaubatz J. W. Isolation, purification, and characterization of a lipoprotein containing Apo B from the human aorta. Atherosclerosis. 1982 Apr;42(2-3):273–297. doi: 10.1016/0021-9150(82)90157-5. [DOI] [PubMed] [Google Scholar]
- Hollander W., Paddock J., Colombo M. Lipoproteins in human atherosclerotic vessels. I. Biochemical properties of arterial low density lipoproteins, very low density lipoproteins, and high density lipoproteins. Exp Mol Pathol. 1979 Apr;30(2):144–171. doi: 10.1016/0014-4800(79)90051-0. [DOI] [PubMed] [Google Scholar]
- Hollander W. Unified concept on the role of acid mucopolysaccharides and connective tissue proteins in the accumulation of lipids, lipoproteins, and calcium in the atherosclerotic plaque. Exp Mol Pathol. 1976 Aug;25(1):106–120. doi: 10.1016/0014-4800(76)90021-6. [DOI] [PubMed] [Google Scholar]
- Insull W., Jr, Bartsch G. E. Cholesterol, triglyceride, and phospholipid content of intima, media, and atherosclerotic fatty streak in human thoracic aorta. J Clin Invest. 1966 Apr;45(4):513–523. doi: 10.1172/JCI105365. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Katz S. S., Shipley G. G., Small D. M. Physical chemistry of the lipids of human atherosclerotic lesions. Demonstration of a lesion intermediate between fatty streaks and advanced plaques. J Clin Invest. 1976 Jul;58(1):200–211. doi: 10.1172/JCI108450. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kruth H. S. Filipin-positive, oil red O-negative particles in atherosclerotic lesions induced by cholesterol feeding. Lab Invest. 1984 Jan;50(1):87–93. [PubMed] [Google Scholar]
- Kruth H. S., Fry D. L. Histochemical detection and differentiation of free and esterified cholesterol in swine atherosclerosis using filipin. Exp Mol Pathol. 1984 Jun;40(3):288–294. doi: 10.1016/0014-4800(84)90046-7. [DOI] [PubMed] [Google Scholar]
- Kruth H. S. Histochemical detection of esterified cholesterol within human atherosclerotic lesions using the fluorescent probe filipin. Atherosclerosis. 1984 May-Jun;51(2-3):281–292. doi: 10.1016/0021-9150(84)90175-8. [DOI] [PubMed] [Google Scholar]
- Kruth H. S. Localization of unesterified cholesterol in human atherosclerotic lesions. Demonstration of filipin-positive, oil-red-O-negative particles. Am J Pathol. 1984 Feb;114(2):201–208. [PMC free article] [PubMed] [Google Scholar]
- Kruth H. S. Subendothelial accumulation of unesterified cholesterol. An early event in atherosclerotic lesion development. Atherosclerosis. 1985 Nov;57(2-3):337–341. doi: 10.1016/0021-9150(85)90045-0. [DOI] [PubMed] [Google Scholar]
- Mawhinney T. P., Augustyn J. M., Fritz K. E. Glycosaminoglycan-lipoprotein complexes from aortas of hypercholesterolemic rabbits. Part 1. Isolation and characterization. Atherosclerosis. 1978 Oct;31(2):155–167. doi: 10.1016/0021-9150(78)90161-2. [DOI] [PubMed] [Google Scholar]
- Miles J., Glasscock R., Aikens J., Gerich J., Haymond M. A microfluorometric method for the determination of free fatty acids in plasma. J Lipid Res. 1983 Jan;24(1):96–99. [PubMed] [Google Scholar]
- Peters T. J., De Duve C. Lysosomes of the arterial wall. II. Subcellular fractionation of aortic cells from rabbits with experimantal atheroma. Exp Mol Pathol. 1974 Apr;20(2):228–256. doi: 10.1016/0014-4800(74)90057-4. [DOI] [PubMed] [Google Scholar]
- Redgrave T. G., Roberts D. C., West C. E. Separation of plasma lipoproteins by density-gradient ultracentrifugation. Anal Biochem. 1975 May 12;65(1-2):42–49. doi: 10.1016/0003-2697(75)90488-1. [DOI] [PubMed] [Google Scholar]
- Shio H., Haley N. J., Fowler S. Characterization of lipid-laden aortic cells from cholesterol-fed rabbits. III. Intracellular localization of cholesterol and cholesteryl ester. Lab Invest. 1979 Aug;41(2):160–167. [PubMed] [Google Scholar]
- Simionescu N., Vasile E., Lupu F., Popescu G., Simionescu M. Prelesional events in atherogenesis. Accumulation of extracellular cholesterol-rich liposomes in the arterial intima and cardiac valves of the hyperlipidemic rabbit. Am J Pathol. 1986 Apr;123(1):109–125. [PMC free article] [PubMed] [Google Scholar]
- Srinivasan S. R., Radhakrishnamurthy B., Pargaonkar P. S., Berenson G. S., Dolan P. Lipoprotein-acid mucopolysaccharide complexes of human atherosclerotic lesions. Biochim Biophys Acta. 1975 Apr 18;388(1):58–70. doi: 10.1016/0005-2760(75)90062-4. [DOI] [PubMed] [Google Scholar]
- Woodard J. F., Srinivasan S. R., Zimny M. L., Radhakrishnamurphy B., Berenson G. S. Electron microscopic features of lipoprotein-glycosaminoglycan complexes from human atherosclerotic plaques. Lab Invest. 1976 May;34(5):516–521. [PubMed] [Google Scholar]