Abstract
A model for the study of tumor angiogenesis within the rabbit brain is presented. Implantation of the VX2 carcinoma provides a reproducible tumor accompanied by angiogenesis. The authors report the sequential growth, histology, tumor neovascularization, and vascular permeability of this tumor following its intracerebral implantation. Tumor angiogenesis correlates with the rapid and logarithmic intracerebral tumor growth. The proliferation of blood vessels in the tumor and the organization of tumor cells around tumor vessels are described. Breakdown of the blood-brain barrier (detected by Evans blue leakage) starts in the early stages of tumor development and becomes prominent as the tumor vasculature and size increase. This model is useful for experimental studies of angiogenesis.
Full text
PDF











Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Auerbach R., Morrissey L. W., Sidky Y. A. Regional differences in the incidence and growth of mouse tumors following intradermal or subcutaneous inoculation. Cancer Res. 1978 Jun;38(6):1739–1744. [PubMed] [Google Scholar]
- Ausprunk D. H., Knighton D. R., Folkman J. Vascularization of normal and neoplastic tissues grafted to the chick chorioallantois. Role of host and preexisting graft blood vessels. Am J Pathol. 1975 Jun;79(3):597–618. [PMC free article] [PubMed] [Google Scholar]
- Barger A. C., Beeuwkes R., 3rd, Lainey L. L., Silverman K. J. Hypothesis: vasa vasorum and neovascularization of human coronary arteries. A possible role in the pathophysiology of atherosclerosis. N Engl J Med. 1984 Jan 19;310(3):175–177. doi: 10.1056/NEJM198401193100307. [DOI] [PubMed] [Google Scholar]
- Brem H., Folkman J. Inhibition of tumor angiogenesis mediated by cartilage. J Exp Med. 1975 Feb 1;141(2):427–439. doi: 10.1084/jem.141.2.427. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brem S. S., Jensen H. M., Gullino P. M. Angiogenesis as a marker of preneoplastic lesions of the human breast. Cancer. 1978 Jan;41(1):239–244. doi: 10.1002/1097-0142(197801)41:1<239::aid-cncr2820410133>3.0.co;2-x. [DOI] [PubMed] [Google Scholar]
- Brem S., Brem H., Folkman J., Finkelstein D., Patz A. Prolonged tumor dormancy by prevention of neovascularization in the vitreous. Cancer Res. 1976 Aug;36(8):2807–2812. [PubMed] [Google Scholar]
- Brem S., Cotran R., Folkman J. Tumor angiogenesis: a quantitative method for histologic grading. J Natl Cancer Inst. 1972 Feb;48(2):347–356. [PubMed] [Google Scholar]
- Brem S. The role of vascular proliferation in the growth of brain tumors. Clin Neurosurg. 1976;23:440–453. doi: 10.1093/neurosurgery/23.cn_suppl_1.440. [DOI] [PubMed] [Google Scholar]
- CHOU S. N. Experimental brain tumors in rabbits and associated cerebral edema. J Lancet. 1961 Feb;81:78–82. [PubMed] [Google Scholar]
- Carson B. S., Anderson J. H., Grossman S. A., Hilton J., White C. L., 3rd, Colvin O. M., Clark A. W., Grochow L. B., Kahn A., Murray K. J. Improved rabbit brain tumor model amenable to diagnostic radiographic procedures. Neurosurgery. 1982 Nov;11(5):603–608. doi: 10.1227/00006123-198211000-00003. [DOI] [PubMed] [Google Scholar]
- Cochran S. T., Higashida R. T., Holburt E., Winter J., Iwamoto K., Norman A. Development of rabbit brain tumor model for radiologic research. Invest Radiol. 1985 Dec;20(9):928–932. doi: 10.1097/00004424-198512000-00007. [DOI] [PubMed] [Google Scholar]
- Deane B. R., Lantos P. L. The vasculature of experimental brain tumours. Part 1. A sequential light and electron microscope study of angiogenesis. J Neurol Sci. 1981 Jan;49(1):55–66. doi: 10.1016/0022-510x(81)90188-x. [DOI] [PubMed] [Google Scholar]
- FEIGIN I., POPOFF N. Neuropathological observations on cerebral edema. The acute phase. Arch Neurol. 1962 Feb;6:151–160. doi: 10.1001/archneur.1962.00450200065006. [DOI] [PubMed] [Google Scholar]
- Folkman J., Klagsbrun M. Angiogenic factors. Science. 1987 Jan 23;235(4787):442–447. doi: 10.1126/science.2432664. [DOI] [PubMed] [Google Scholar]
- Folkman J. Tumor angiogenesis. Adv Cancer Res. 1985;43:175–203. doi: 10.1016/s0065-230x(08)60946-x. [DOI] [PubMed] [Google Scholar]
- Fournier G. A., Lutty G. A., Watt S., Fenselau A., Patz A. A corneal micropocket assay for angiogenesis in the rat eye. Invest Ophthalmol Vis Sci. 1981 Aug;21(2):351–354. [PubMed] [Google Scholar]
- Gimbrone M. A., Jr, Cotran R. S., Leapman S. B., Folkman J. Tumor growth and neovascularization: an experimental model using the rabbit cornea. J Natl Cancer Inst. 1974 Feb;52(2):413–427. doi: 10.1093/jnci/52.2.413. [DOI] [PubMed] [Google Scholar]
- Goldstein G. W., Betz A. L. Recent advances in understanding brain capillary function. Ann Neurol. 1983 Oct;14(4):389–395. doi: 10.1002/ana.410140402. [DOI] [PubMed] [Google Scholar]
- Gospodarowicz D., Bialecki H., Greenburg G. Purification of the fibroblast growth factor activity from bovine brain. J Biol Chem. 1978 May 25;253(10):3736–3743. [PubMed] [Google Scholar]
- Hobson B., Denekamp J. Endothelial proliferation in tumours and normal tissues: continuous labelling studies. Br J Cancer. 1984 Apr;49(4):405–413. doi: 10.1038/bjc.1984.66. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klagsbrun M., Knighton D., Folkman J. Tumor angiogenesis activity in cells grown in tissue culture. Cancer Res. 1976 Jan;36(1):110–114. [PubMed] [Google Scholar]
- Klatzo I. Presidental address. Neuropathological aspects of brain edema. J Neuropathol Exp Neurol. 1967 Jan;26(1):1–14. doi: 10.1097/00005072-196701000-00001. [DOI] [PubMed] [Google Scholar]
- Kumar A. J., Hassenbusch S., Rosenbaum A. E., Beck T. J., Hadfield R., Ahn H. S., Anderson J. Sequential computed tomographic imaging of a transplantable rabbit brain tumor. Neuroradiology. 1986;28(1):81–86. doi: 10.1007/BF00341774. [DOI] [PubMed] [Google Scholar]
- Libermann T. A., Friesel R., Jaye M., Lyall R. M., Westermark B., Drohan W., Schmidt A., Maciag T., Schlessinger J. An angiogenic growth factor is expressed in human glioma cells. EMBO J. 1987 Jun;6(6):1627–1632. doi: 10.1002/j.1460-2075.1987.tb02410.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Long D. M. Capillary ultrastructure and the blood-brain barrier in human malignant brain tumors. J Neurosurg. 1970 Feb;32(2):127–144. doi: 10.3171/jns.1970.32.2.0127. [DOI] [PubMed] [Google Scholar]
- Marin-Padilla M. Early vascularization of the embryonic cerebral cortex: Golgi and electron microscopic studies. J Comp Neurol. 1985 Nov 8;241(2):237–249. doi: 10.1002/cne.902410210. [DOI] [PubMed] [Google Scholar]
- Morgan D. F., Silberman A. W., Bubbers J. E., Rand R. W., Storm F. K., Morton D. L. An experimental brain tumor model in rabbits. J Surg Oncol. 1982 Aug;20(4):218–220. doi: 10.1002/jso.2930200406. [DOI] [PubMed] [Google Scholar]
- Muthukkaruppan V., Auerbach R. Angiogenesis in the mouse cornea. Science. 1979 Sep 28;205(4413):1416–1418. doi: 10.1126/science.472760. [DOI] [PubMed] [Google Scholar]
- NYSTROM S. Pathological changes in blood vessels of human glioblastoma multiforme. Comparative studies using plastic casting, angiography, light microscopy and electron microscopy, and with reference to some other brain tumours. Acta Pathol Microbiol Scand Suppl. 1960;49(Suppl 137):1–83. [PubMed] [Google Scholar]
- Nicosia R. F., Tchao R., Leighton J. Angiogenesis-dependent tumor spread in reinforced fibrin clot culture. Cancer Res. 1983 May;43(5):2159–2166. [PubMed] [Google Scholar]
- Nishio S., Ohta M., Abe M., Kitamura K. Microvascular abnormalities in ethylnitrosourea (ENU)-induced rat brain tumors: structural basis for altered blood-brain barrier function. Acta Neuropathol. 1983;59(1):1–10. doi: 10.1007/BF00690311. [DOI] [PubMed] [Google Scholar]
- Oldendorf W. H., Brown W. J. Greater number of capillary endothelial cell mitochondria in brain than in muscle. Proc Soc Exp Biol Med. 1975 Jul;149(3):736–738. doi: 10.3181/00379727-149-38889. [DOI] [PubMed] [Google Scholar]
- Patz A., Brem S., Finkelstein D., Chen C. H., Lutty G., Bennett A., Coughlin W. R., Gardner J. A new approach to the problem of retinal neovascularization. Ophthalmology. 1978 Jun;85(6):626–637. doi: 10.1016/s0161-6420(78)35640-2. [DOI] [PubMed] [Google Scholar]
- Reese T. S., Karnovsky M. J. Fine structural localization of a blood-brain barrier to exogenous peroxidase. J Cell Biol. 1967 Jul;34(1):207–217. doi: 10.1083/jcb.34.1.207. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schreiber A. B., Winkler M. E., Derynck R. Transforming growth factor-alpha: a more potent angiogenic mediator than epidermal growth factor. Science. 1986 Jun 6;232(4755):1250–1253. doi: 10.1126/science.2422759. [DOI] [PubMed] [Google Scholar]
- Tannock I. F. Population kinetics of carcinoma cells, capillary endothelial cells, and fibroblasts in a transplanted mouse mammary tumor. Cancer Res. 1970 Oct;30(10):2470–2476. [PubMed] [Google Scholar]
- Tannock I. F. The relation between cell proliferation and the vascular system in a transplanted mouse mammary tumour. Br J Cancer. 1968 Jun;22(2):258–273. doi: 10.1038/bjc.1968.34. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vick N. A., Bigner D. D. Microvascular abnormalities in virally-induced canine brain tumors. Structural bases for altered blood-brain barrier function. J Neurol Sci. 1972 Sep;17(1):29–39. doi: 10.1016/0022-510x(72)90019-6. [DOI] [PubMed] [Google Scholar]
- Westergaard E., Brightman M. W. Transport of proteins across normal cerebral arterioles. J Comp Neurol. 1973 Nov 1;152(1):17–44. doi: 10.1002/cne.901520103. [DOI] [PubMed] [Google Scholar]