Abstract
The deposition of calcium-containing crystals in tissues is due to a combination of factors: elevation in the concentrations of precipitating ions, formation of specific nucleators, and removal of macromolecules that inhibit crystal deposition. This study tested the hypothesis that calcium acidic phospholipid phosphate complexes, which promote hydroxyapatite deposition both in vitro and in vivo, are associated only with hydroxyapatite deposits, and furthermore, that the presence of these complexes is associated with all such hydroxyapatite deposits. Lipid analysis of 76 surgical specimens containing evidence of pathologic calcification (35 hydroxyapatite, 35 calcium pyrophosphate dihydrate, and 6 containing other crystalline materials) had mean complexed acidic phospholipid contents of 8.7, 1, and 0.012, (microgram/mg demineralized dry weight) respectively. Tissues that contained larger, more perfect hydroxyapatite crystals based on x-ray diffraction analyses, had a higher complexed acidic phospholipid content (7.5 +/- 4 micrograms/mg demineralized dry weight, N = 16) than tissues with poorly crystallized hydroxyapatite (3.9 +/- 2 micrograms/mg, N = 11). Histologically, tissues containing larger crystals were characterized by cell or tissue necrosis. Poorly crystalline deposits were found in tissues showing little or no evidence of cell necrosis or tissue degeneration.
Full text
PDF







Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- AlMuddaris M. F., Dougherty W. J. The association of amorphous mineral deposits with the plasma membrane of pre- and young odontoblasts and their relationship to the origin of dentinal matrix vesicles in rat incisor teeth. Am J Anat. 1979 Jun;155(2):223–244. doi: 10.1002/aja.1001550206. [DOI] [PubMed] [Google Scholar]
- Anderson H. C. Calcification processes. Pathol Annu. 1980;15(Pt 2):45–75. [PubMed] [Google Scholar]
- Anderson H. C. Vesicles associated with calcification in the matrix of epiphyseal cartilage. J Cell Biol. 1969 Apr;41(1):59–72. doi: 10.1083/jcb.41.1.59. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Anghileri L. J., Hossfeld D. K. Evidence of phospholipids and mucopolysaccharides in the cystic fluid from a patient with generalized tissue calcification. Klin Wochenschr. 1978 Oct 15;56(20):1013–1017. doi: 10.1007/BF01476666. [DOI] [PubMed] [Google Scholar]
- Arsenis C. Role of mitochondria in calcification, Mitochondrial activity distribution in the epiphyseal plate and accumulation of calcium and phosphate ions by chondrocyte mitochondria. Biochem Biophys Res Commun. 1972 Mar 10;46(5):1928–1935. doi: 10.1016/0006-291x(72)90072-1. [DOI] [PubMed] [Google Scholar]
- Boskey A. L., Boyan-Salyers B. D., Burstein L. S., Mandel I. D. Lipids associated with mineralization of human submandibular gland sialoliths. Arch Oral Biol. 1981;26(10):779–785. doi: 10.1016/0003-9969(81)90173-4. [DOI] [PubMed] [Google Scholar]
- Boskey A. L., Bullough P. G. Cartilage calcification: normal and aberrant. Scan Electron Microsc. 1984;(Pt 2):943–952. [PubMed] [Google Scholar]
- Boskey A. L., Posner A. S., Lane J. M., Goldberg M. R., Cordella D. M. Distribution of lipids associated with mineralization in the bovine epiphyseal growth plate. Arch Biochem Biophys. 1980 Feb;199(2):305–311. doi: 10.1016/0003-9861(80)90285-4. [DOI] [PubMed] [Google Scholar]
- Boskey A. L., Posner A. S. The role of synthetic and bone extracted Ca-phospholipid-PO4 complexes in hydroxyapatite formation. Calcif Tissue Res. 1977 Oct 20;23(3):251–258. doi: 10.1007/BF02012794. [DOI] [PubMed] [Google Scholar]
- Boskey A. L., Reddi A. H. Changes in lipids during matrix: induced endochondral bone formation. Calcif Tissue Int. 1983 Jul;35(4-5):549–554. doi: 10.1007/BF02405092. [DOI] [PubMed] [Google Scholar]
- Boskey A. L., Timchak D. M. Phospholipid changes in the bones of the vitamin D-deficient, phosphate-deficient, immature rat. Metab Bone Dis Relat Res. 1983;5(2):81–85. doi: 10.1016/0221-8747(83)90006-1. [DOI] [PubMed] [Google Scholar]
- Boskey A. L., Vigorita V. J., Sencer O., Stuchin S. A., Lane J. M. Chemical, microscopic, and ultrastructural characterization of the mineral deposits in tumoral calcinosis. Clin Orthop Relat Res. 1983 Sep;(178):258–269. [PubMed] [Google Scholar]
- Boyan B. D., Boskey A. L. Co-isolation of proteolipids and calcium-phospholipid-phosphate complexes. Calcif Tissue Int. 1984 Mar;36(2):214–218. doi: 10.1007/BF02405320. [DOI] [PubMed] [Google Scholar]
- Chen C. C., Boskey A. L. Mechanisms of proteoglycan inhibition of hydroxyapatite growth. Calcif Tissue Int. 1985 Jul;37(4):395–400. doi: 10.1007/BF02553709. [DOI] [PubMed] [Google Scholar]
- Dmitrovsky E., Boskey A. L. Calcium-acidic phospholipid-phosphate complexes in human atherosclerotic aortas. Calcif Tissue Int. 1985 Mar;37(2):121–125. doi: 10.1007/BF02554830. [DOI] [PubMed] [Google Scholar]
- Finlayson B., Khan S. R., Hackett R. L. Mechanisms of stone formation--an overview. Scan Electron Microsc. 1984;(Pt 3):1419–1425. [PubMed] [Google Scholar]
- Fisher L. W., Termine J. D. Noncollagenous proteins influencing the local mechanisms of calcification. Clin Orthop Relat Res. 1985 Nov;(200):362–385. [PubMed] [Google Scholar]
- Hearn P. R., Russell R. G. Formation of calcium pyrophosphate crystals in vitro: implications for calcium pyrophosphate crystal deposition disease (pseudogout). Ann Rheum Dis. 1980 Jun;39(3):222–227. doi: 10.1136/ard.39.3.222. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Khan S. R., Shevock P. N., Hackett R. L. In vitro precipitation of calcium oxalate in the presence of whole matrix or lipid components of the urinary stones. J Urol. 1988 Feb;139(2):418–422. doi: 10.1016/s0022-5347(17)42447-5. [DOI] [PubMed] [Google Scholar]
- Khan S. R., Shevock P. N., Hackett R. L. Presence of lipids in urinary stones: results of preliminary studies. Calcif Tissue Int. 1988 Feb;42(2):91–96. doi: 10.1007/BF02556340. [DOI] [PubMed] [Google Scholar]
- Kim K. M., Valigorsky J. M., Mergner W. J., Jones R. T., Pendergrass R. F., Trump B. F. Aging changes in the human aortic valve in relation to dystrophic calcification. Hum Pathol. 1976 Jan;7(1):47–60. doi: 10.1016/s0046-8177(76)80005-6. [DOI] [PubMed] [Google Scholar]
- Mandel N. S. The structural basis of crystal-induced membranolysis. Arthritis Rheum. 1976 May-Jun;19 (Suppl 3):439–445. doi: 10.1002/1529-0131(197605/06)19:3+<439::aid-art1780190719>3.0.co;2-l. [DOI] [PubMed] [Google Scholar]
- PRIEN E. L. Studies in urolithiasis. III. Physicochemical principles in stone formation and prevention. J Urol. 1955 Apr;73(4):627–652. doi: 10.1016/S0022-5347(17)67448-2. [DOI] [PubMed] [Google Scholar]
- Quelch K. J., Melick R. A., Bingham P. J., Mercuri S. M. Chemical composition of human bone. Arch Oral Biol. 1983;28(8):665–674. doi: 10.1016/0003-9969(83)90100-0. [DOI] [PubMed] [Google Scholar]
- Raggio C. L., Boyan B. D., Boskey A. L. In vivo hydroxyapatite formation induced by lipids. J Bone Miner Res. 1986 Oct;1(5):409–415. doi: 10.1002/jbmr.5650010505. [DOI] [PubMed] [Google Scholar]
- Russell R. G., Caswell A. M., Hearn P. R., Sharrard R. M. Calcium in mineralized tissues and pathological calcification. Br Med Bull. 1986 Oct;42(4):435–446. doi: 10.1093/oxfordjournals.bmb.a072163. [DOI] [PubMed] [Google Scholar]
- Schoen F. J., Tsao J. W., Levy R. J. Calcification of bovine pericardium used in cardiac valve bioprostheses. Implications for the mechanisms of bioprosthetic tissue mineralization. Am J Pathol. 1986 Apr;123(1):134–145. [PMC free article] [PubMed] [Google Scholar]
- Timchak D. M., Boskey A. L., Vigorita V. Lack of lipid involvement in nonosseous tissue repair. Proc Soc Exp Biol Med. 1983 Oct;174(1):59–64. doi: 10.3181/00379727-174-41704. [DOI] [PubMed] [Google Scholar]
- Wiessner J., Mandel G., Halverson P., Mandel N. The effect of hydroxyapatite crystallinity on hemolysis. Calcif Tissue Int. 1988 Apr;42(4):210–219. doi: 10.1007/BF02553746. [DOI] [PubMed] [Google Scholar]
- Wuthier R. E. A review of the primary mechanism of endochondral calcification with special emphasis on the role of cells, mitochondria and matrix vesicles. Clin Orthop Relat Res. 1982 Sep;(169):219–242. [PubMed] [Google Scholar]
- Wuthier R. E., Gore S. T. Partition of inorganic ions and phospholipids in isolated cell, membrane and matrix vesicle fractions: evidence for Ca-Pi-acidic phospholipid complexes. Calcif Tissue Res. 1977 Dec 28;24(2):163–171. doi: 10.1007/BF02223311. [DOI] [PubMed] [Google Scholar]


