Abstract
These experiments were designed to determine whether hypercholesterolemia and the accumulation of cholesterol or cholesteryl esters in rabbit carrageenan granuloma macrophages might influence selected markers of macrophage activation. Granulomas induced by subcutaneous injection of carrageenan into rabbits were harvested after 4, 14, and 28 days. Macrophages were isolated from granuloma tissues by collagenase digestion and cultured overnight. Secretion of lysosomal beta-glucuronidase, membrane 5'-nucleotidase, cellular plasminogen activator, and superoxide anion generation were measured as markers of activation. beta-Glucuronidase activity secreted into the media by granuloma macrophages from normocholesterolemic (NC) and hypercholesterolemic (HC) rabbits showed a trend toward an increase with time between 4 and 14 days in both groups. This was confirmed in a separate experiment with a significant increase by 14 days, together with a significantly greater secretion by NC macrophages and a significantly elevated level of cellular beta-glucuronidase activity in NC relative to HC macrophages. Activity of the membrane ectoenzyme 5'-nucleotidase was minimal in lysates of NC or HC macrophages, in contrast to freshly isolated human monocytes, indicating that both NC and HC granuloma macrophages were highly activated. Cellular plasminogen activator activity was significantly increased between 4 and 14 days, and was significantly greater in HC than in NC macrophages at 14 days. Stimulation of macrophages with phorbol myristate acetate increased superoxide anion generation by both NC and HC macrophages; however, no difference in superoxide anion generation was observed between macrophages from NC and HC rabbits. On the basis of the 5'-nucleotidase findings, it is concluded that both the NC and HC granuloma macrophages are highly activated, and further that hypercholesterolemia does not enhance macrophage generation of superoxide anion, either spontaneously or as the result of phorbol myristate acetate stimulation. Although hypercholesterolemia results in macrophage activation in terms of an increased cellular plasminogen activator activity, the secretion of the lysosomal enzyme beta-glucuronidase is diminished. Thus, hypercholesterolemia associated with macrophage cholesterol and cholesteryl ester accumulation has no consistent overall influence on activation, a finding of potential importance in the context of atherogenesis.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Avruch J., Wallach D. F. Preparation and properties of plasma membrane and endoplasmic reticulum fragments from isolated rat fat cells. Biochim Biophys Acta. 1971 Apr 13;233(2):334–347. doi: 10.1016/0005-2736(71)90331-2. [DOI] [PubMed] [Google Scholar]
- Baker J. B., Low D. A., Simmer R. L., Cunningham D. D. Protease-nexin: a cellular component that links thrombin and plasminogen activator and mediates their binding to cells. Cell. 1980 Aug;21(1):37–45. doi: 10.1016/0092-8674(80)90112-9. [DOI] [PubMed] [Google Scholar]
- Bilheimer D. W., Eisenberg S., Levy R. I. The metabolism of very low density lipoprotein proteins. I. Preliminary in vitro and in vivo observations. Biochim Biophys Acta. 1972 Feb 21;260(2):212–221. doi: 10.1016/0005-2760(72)90034-3. [DOI] [PubMed] [Google Scholar]
- Chait A., Iverius P. H., Brunzell J. D. Lipoprotein lipase secretion by human monocyte-derived macrophages. J Clin Invest. 1982 Feb;69(2):490–493. doi: 10.1172/JCI110473. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chapman H. A., Jr, Vavrin Z., Hibbs J. B., Jr Macrophage fibrinolytic activity: identification of two pathways of plasmin formation by intact cells and of a plasminogen activator inhibitor. Cell. 1982 Mar;28(3):653–662. doi: 10.1016/0092-8674(82)90220-3. [DOI] [PubMed] [Google Scholar]
- D'Angelo V., Villa S., Mysliwiec M., Donati M. B., de Gaetano G. Defective fibrinolytic and prostacyclin-like activity in human atheromatous plaques. Thromb Haemost. 1978 Apr 30;39(2):535–536. [PubMed] [Google Scholar]
- Dembinska-Kiec A., Gryglewska T., Zmuda A., Gryglewski R. J. The generation of prostacyclin by arteries and by the coronary vascular bed is reduced in experimental atherosclerosis in rabbits. Prostaglandins. 1977;14(6):1025–1034. doi: 10.1016/0090-6980(77)90282-9. [DOI] [PubMed] [Google Scholar]
- Deutsch D. G., Mertz E. T. Plasminogen: purification from human plasma by affinity chromatography. Science. 1970 Dec 4;170(3962):1095–1096. doi: 10.1126/science.170.3962.1095. [DOI] [PubMed] [Google Scholar]
- GLAVIND J., HARTMANN S., CLEMMESEN J., JESSEN K. E., DAM H. Studies on the role of lipoperoxides in human pathology. II. The presence of peroxidized lipids in the atherosclerotic aorta. Acta Pathol Microbiol Scand. 1952;30(1):1–6. doi: 10.1111/j.1699-0463.1952.tb00157.x. [DOI] [PubMed] [Google Scholar]
- Günzler W. A., Steffens G. J., Otting F., Kim S. M., Frankus E., Flohé L. The primary structure of high molecular mass urokinase from human urine. The complete amino acid sequence of the A chain. Hoppe Seylers Z Physiol Chem. 1982 Oct;363(10):1155–1165. doi: 10.1515/bchm2.1982.363.2.1155. [DOI] [PubMed] [Google Scholar]
- Hajjar D. P., Weksler B. B., Falcone D. J., Hefton J. M., Tack-Goldman K., Minick C. R. Prostacyclin modulates cholesteryl ester hydrolytic activity by its effect on cyclic adenosine monophosphate in rabbit aortic smooth muscle cells. J Clin Invest. 1982 Sep;70(3):479–488. doi: 10.1172/JCI110639. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hajjar D. P., Weksler B. B. Metabolic activity of cholesteryl esters in aortic smooth muscle cells is altered by prostaglandins I2 and E2. J Lipid Res. 1983 Sep;24(9):1176–1185. [PubMed] [Google Scholar]
- Henriksen T., Mahoney E. M., Steinberg D. Enhanced macrophage degradation of low density lipoprotein previously incubated with cultured endothelial cells: recognition by receptors for acetylated low density lipoproteins. Proc Natl Acad Sci U S A. 1981 Oct;78(10):6499–6503. doi: 10.1073/pnas.78.10.6499. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hessler J. R., Robertson A. L., Jr, Chisolm G. M., 3rd LDL-induced cytotoxicity and its inhibition by HDL in human vascular smooth muscle and endothelial cells in culture. Atherosclerosis. 1979 Mar;32(3):213–229. doi: 10.1016/0021-9150(79)90166-7. [DOI] [PubMed] [Google Scholar]
- Johnston R. B., Jr, Godzik C. A., Cohn Z. A. Increased superoxide anion production by immunologically activated and chemically elicited macrophages. J Exp Med. 1978 Jul 1;148(1):115–127. doi: 10.1084/jem.148.1.115. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kelley J. L., Rozek M. M., Suenram C. A., Schwartz C. J. Activation of human blood monocytes by adherence to tissue culture plastic surfaces. Exp Mol Pathol. 1987 Jun;46(3):266–278. doi: 10.1016/0014-4800(87)90049-9. [DOI] [PubMed] [Google Scholar]
- Kelley J. L., Suenram C. A., Valente A. J., Sprague E. A., Rozek M. M., Schwartz C. J. Evolution of foam cells in subcutaneous rabbit carrageenan granulomas. II. Tissue and macrophage lipid composition. Am J Pathol. 1985 Sep;120(3):391–401. [PMC free article] [PubMed] [Google Scholar]
- Khoo J. C., Mahoney E. M., Witztum J. L. Secretion of lipoprotein lipase by macrophages in culture. J Biol Chem. 1981 Jul 25;256(14):7105–7108. [PubMed] [Google Scholar]
- Klimetzek V., Sorg C. The production of fibrinolysis inhibitors as a parameter of the activation state in murine macrophages. Eur J Immunol. 1979 Aug;9(8):613–619. doi: 10.1002/eji.1830090808. [DOI] [PubMed] [Google Scholar]
- Larrue J., Rigaud M., Daret D., Demond J., Durand J., Bricaud H. Prostacyclin production by cultured smooth muscle cells from atherosclerotic rabbit aorta. Nature. 1980 Jun 12;285(5765):480–482. doi: 10.1038/285480a0. [DOI] [PubMed] [Google Scholar]
- Martin B. M., Gimbrone M. A., Jr, Unanue E. R., Cotran R. S. Stimulation of nonlymphoid mesenchymal cell proliferation by a macrophage-derived growth factor. J Immunol. 1981 Apr;126(4):1510–1515. [PubMed] [Google Scholar]
- Moncada S., Gryglewski R. J., Bunting S., Vane J. R. A lipid peroxide inhibits the enzyme in blood vessel microsomes that generates from prostaglandin endoperoxides the substance (prostaglandin X) which prevents platelet aggregation. Prostaglandins. 1976 Nov;12(5):715–737. doi: 10.1016/0090-6980(76)90048-4. [DOI] [PubMed] [Google Scholar]
- Moncada S., Radomski M. W. The problems and the promise of prostaglandin influences in atherogenesis. Ann N Y Acad Sci. 1985;454:121–130. doi: 10.1111/j.1749-6632.1985.tb11850.x. [DOI] [PubMed] [Google Scholar]
- Page R. C., Davies P., Allison A. C. The macrophage as a secretory cell. Int Rev Cytol. 1978;52:119–157. doi: 10.1016/s0074-7696(08)60755-x. [DOI] [PubMed] [Google Scholar]
- Pennica D., Holmes W. E., Kohr W. J., Harkins R. N., Vehar G. A., Ward C. A., Bennett W. F., Yelverton E., Seeburg P. H., Heyneker H. L. Cloning and expression of human tissue-type plasminogen activator cDNA in E. coli. Nature. 1983 Jan 20;301(5897):214–221. doi: 10.1038/301214a0. [DOI] [PubMed] [Google Scholar]
- Pierce C. W. Macrophages: modulators of immunity. Parke-Davis Award Lecture. Am J Pathol. 1980 Jan;98(1):10–28. [PMC free article] [PubMed] [Google Scholar]
- Rogers K. A., Hoover R. L., Castellot J. J., Jr, Robinson J. M., Karnovsky M. J. Dietary cholesterol-induced changes in macrophage characteristics. Relationship to atherosclerosis. Am J Pathol. 1986 Nov;125(2):284–291. [PMC free article] [PubMed] [Google Scholar]
- Saito H., Salmon J. A., Moncada S. Influence of cholesterol feeding on the production of eicosanoids, tissue plasminogen activator and superoxide anion (O2-) by rabbit blood monocytes. Atherosclerosis. 1986 Aug;61(2):141–148. doi: 10.1016/0021-9150(86)90074-2. [DOI] [PubMed] [Google Scholar]
- Salmon J. A., Smith D. R., Flower R. J., Moncada S., Vane J. R. Further studies on the enzymatic conversion of prostaglandin endoperoxide into prostacyclin by porcine aorta microsomes. Biochim Biophys Acta. 1978 Mar 14;523(1):250–262. doi: 10.1016/0005-2744(78)90028-1. [DOI] [PubMed] [Google Scholar]
- Schnyder J., Baggiolini M. Secretion of lysosomal hydrolases by stimulated and nonstimulated macrophages. J Exp Med. 1978 Aug 1;148(2):435–450. doi: 10.1084/jem.148.2.435. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schwartz C. J., Ghidoni J. J., Kelley J. L., Sprague E. A., Valente A. J., Suenram C. A. Evolution of foam cells in subcutaneous rabbit carrageenan granulomas: I. Light-microscopic and ultrastructural study. Am J Pathol. 1985 Jan;118(1):134–150. [PMC free article] [PubMed] [Google Scholar]
- Schwartz C. J., Valente A. J., Sprague E. A., Kelley J. L., Suenram C. A., Graves D. T., Rozek M. M., Edwards E. H., Delgado R. Monocyte-macrophage participation in atherogenesis: inflammatory components of pathogenesis. Semin Thromb Hemost. 1986 Apr;12(2):79–86. doi: 10.1055/s-2007-1003539. [DOI] [PubMed] [Google Scholar]
- Scott R. W., Eaton D. L., Duran N., Baker J. B. Regulation of extracellular plasminogen activator by human fibroblasts. The role of protease nexin. J Biol Chem. 1983 Apr 10;258(7):4397–4403. [PubMed] [Google Scholar]
- Sorger T., Germinario R. J. A direct solubilization procedure for the determination of DNA and protein in cultured fibroblast monolayers. Anal Biochem. 1983 May;131(1):254–256. doi: 10.1016/0003-2697(83)90163-x. [DOI] [PubMed] [Google Scholar]
- Steffens G. J., Günzler W. A., Otting F., Frankus E., Flohé L. The complete amino acid sequence of low molecular mass urokinase from human urine. Hoppe Seylers Z Physiol Chem. 1982 Sep;363(9):1043–1058. doi: 10.1515/bchm2.1982.363.2.1043. [DOI] [PubMed] [Google Scholar]
- Steinbrecher U. P., Parthasarathy S., Leake D. S., Witztum J. L., Steinberg D. Modification of low density lipoprotein by endothelial cells involves lipid peroxidation and degradation of low density lipoprotein phospholipids. Proc Natl Acad Sci U S A. 1984 Jun;81(12):3883–3887. doi: 10.1073/pnas.81.12.3883. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thakral K. K., Goodson W. H., 3rd, Hunt T. K. Stimulation of wound blood vessel growth by wound macrophages. J Surg Res. 1979 Apr;26(4):430–436. doi: 10.1016/0022-4804(79)90031-3. [DOI] [PubMed] [Google Scholar]
- Unanue E. R. The macrophage as a regulator of lymphocyte function. Hosp Pract. 1979 Nov;14(11):61-4, 69-74. doi: 10.1080/21548331.1979.11707644. [DOI] [PubMed] [Google Scholar]
- Van Hinsbergh V. W. LDL cytotoxicity. The state of the art. Atherosclerosis. 1984 Nov;53(2):113–118. doi: 10.1016/0021-9150(84)90188-6. [DOI] [PubMed] [Google Scholar]
- Vassalli J. D., Dayer J. M., Wohlwend A., Belin D. Concomitant secretion of prourokinase and of a plasminogen activator-specific inhibitor by cultured human monocytes-macrophages. J Exp Med. 1984 Jun 1;159(6):1653–1668. doi: 10.1084/jem.159.6.1653. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vassalli J. D., Hamilton J., Reich E. Macrophage plasminogen activator: induction by concanavalin A and phorbol myristate acetate. Cell. 1977 Jul;11(3):695–705. doi: 10.1016/0092-8674(77)90086-1. [DOI] [PubMed] [Google Scholar]
- Vassalli J. D., Hamilton J., Reich E. Macrophage plasminogen activator: modulation of enzyme production by anti-inflammatory steroids, mitotic inhibitors, and cyclic nucleotides. Cell. 1976 Jun;8(2):271–281. doi: 10.1016/0092-8674(76)90011-8. [DOI] [PubMed] [Google Scholar]
- Vassalli J. D., Reich E. Macrophage plasminogen activator: induction by products of activated lymphoid cells. J Exp Med. 1977 Feb 1;145(2):429–437. doi: 10.1084/jem.145.2.429. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weksler B. B., Hajjar D. P., Eldor A., Falcone D. J., Tack-Goldman K., Minick C. R. Interactions between prostacyclin metabolism and cholesteryl ester metabolism in the vascular wall. Adv Prostaglandin Thromboxane Leukot Res. 1983;11:463–467. [PubMed] [Google Scholar]
- Werb Z., Chin J. R. Endotoxin suppresses expression of apoprotein E by mouse macrophages in vivo and in culture. A biochemical and genetic study. J Biol Chem. 1983 Sep 10;258(17):10642–10648. [PubMed] [Google Scholar]
- Woollen J. W., Walker P. G. The fluorimetric estimation of beta-glucuronidase in blood plasma. Clin Chim Acta. 1965 Dec;12(6):659–670. doi: 10.1016/0009-8981(65)90148-8. [DOI] [PubMed] [Google Scholar]
