Abstract
A therapeutic dose of azithromycin was administered to test subjects and then the following lymphocyte functions were examined in vitro: proliferative lymphocyte response to stimulation with pokeweed mitogen, levels of immunoglobulins G, A, and M in serum, and the amount of the soluble interleukin 2 receptors in supernatants of mononuclear cell cultures stimulated with phytohemagglutinin and phorbol myristate acetate. The study was performed as a controlled clinical trial comparing an azithromycin-treated group (n = 21) and a placebo-treated control group (n = 10). Healthy female volunteers were placed into one of the two groups, and the study was performed as a double-blind trial. Although the findings of the present study showed that azithromycin significantly increased the proliferative lymphocyte response to pokeweed mitogen, the results could have been due to experimental variation. However, impairment of the lymphocyte function was not observed, which could represent valuable information. Likewise, no effect of azithromycin on levels of the immunoglobulins in serum was observed. The most marked effect of azithromycin on the lymphocyte function was demonstrated by an elevation in the amount of soluble interleukin 2 receptor production in mononuclear cell cultures. The lack of impairment or, perhaps, even a beneficial influence on the immunodefense system may be an important property of azithromycin, especially in immunocompromised individuals.
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson R., Van Rensburg C. E., Eftychis H., Jooné G., van Rensburg A. J. Further studies on erythromycin effects on cellular immune functions in vitro and in vivo. Enhancement of neutrophil motility by erythromycin combined with ascorbate or thiamine. J Antimicrob Chemother. 1982 Nov;10(5):409–417. doi: 10.1093/jac/10.5.409. [DOI] [PubMed] [Google Scholar]
- Banerji M. A., Lebovitz H. E. Coronary heart disease risk factor profiles in black patients with non-insulin-dependent diabetes mellitus: paradoxic patterns. Am J Med. 1991 Jul;91(1):51–58. doi: 10.1016/0002-9343(91)90073-7. [DOI] [PubMed] [Google Scholar]
- Dower S. K., Smith C. A., Park L. S. Human cytokine receptors. J Clin Immunol. 1990 Nov;10(6):289–299. doi: 10.1007/BF00917473. [DOI] [PubMed] [Google Scholar]
- Gladue R. P., Bright G. M., Isaacson R. E., Newborg M. F. In vitro and in vivo uptake of azithromycin (CP-62,993) by phagocytic cells: possible mechanism of delivery and release at sites of infection. Antimicrob Agents Chemother. 1989 Mar;33(3):277–282. doi: 10.1128/aac.33.3.277. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gladue R. P., Snider M. E. Intracellular accumulation of azithromycin by cultured human fibroblasts. Antimicrob Agents Chemother. 1990 Jun;34(6):1056–1060. doi: 10.1128/aac.34.6.1056. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hardy D. J., Hensey D. M., Beyer J. M., Vojtko C., McDonald E. J., Fernandes P. B. Comparative in vitro activities of new 14-, 15-, and 16-membered macrolides. Antimicrob Agents Chemother. 1988 Nov;32(11):1710–1719. doi: 10.1128/aac.32.11.1710. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kirst H. A. New macrolides: expanded horizons for an old class of antibiotics. J Antimicrob Chemother. 1991 Dec;28(6):787–790. doi: 10.1093/jac/28.6.787. [DOI] [PubMed] [Google Scholar]
- Kirst H. A., Sides G. D. New directions for macrolide antibiotics: pharmacokinetics and clinical efficacy. Antimicrob Agents Chemother. 1989 Sep;33(9):1419–1422. doi: 10.1128/aac.33.9.1419. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kroemer G., Andreu J. L., Gonzalo J. A., Gutierrez-Ramos J. C., Martínez C. Interleukin-2, autotolerance, and autoimmunity. Adv Immunol. 1991;50:147–235. doi: 10.1016/s0065-2776(08)60825-1. [DOI] [PubMed] [Google Scholar]
- Leonard W. J., Depper J. M., Crabtree G. R., Rudikoff S., Pumphrey J., Robb R. J., Krönke M., Svetlik P. B., Peffer N. J., Waldmann T. A. Molecular cloning and expression of cDNAs for the human interleukin-2 receptor. Nature. 1984 Oct 18;311(5987):626–631. doi: 10.1038/311626a0. [DOI] [PubMed] [Google Scholar]
- Mastro A. M., Garlisi C. G., Grove D. S., Grier C. E., 3rd, Pishak S. A. Negative regulation of interleukin-2 production in primary lymphocytes by 12-O-tetradecanoylphorbol-13-acetate. Lymphokine Cytokine Res. 1991 Jun;10(3):153–164. [PubMed] [Google Scholar]
- Naess A., Solberg C. O. Effects of two macrolide antibiotics on human leukocyte membrane receptors and functions. APMIS. 1988 Jun;96(6):503–508. doi: 10.1111/j.1699-0463.1988.tb05336.x. [DOI] [PubMed] [Google Scholar]
- Roche Y., Gougerot-Pocidalo M. A., Fay M., Forest N., Pocidalo J. J. Macrolides and immunity: effects of erythromycin and spiramycin on human mononuclear cell proliferation. J Antimicrob Chemother. 1986 Feb;17(2):195–203. doi: 10.1093/jac/17.2.195. [DOI] [PubMed] [Google Scholar]
- Rubin L. A., Nelson D. L. The soluble interleukin-2 receptor: biology, function, and clinical application. Ann Intern Med. 1990 Oct 15;113(8):619–627. doi: 10.7326/0003-4819-113-8-619. [DOI] [PubMed] [Google Scholar]
- Suzuki N., Sakane T. Mechanism of T cell-derived helper factor production upon stimulation with pokeweed mitogen in humans. Clin Exp Immunol. 1988 Feb;71(2):343–349. [PMC free article] [PubMed] [Google Scholar]
- Suzuki N., Sakane T., Ueda Y., Murakawa Y., Tsunematsu T. Implications for the role of cognate interactions in in vitro human B cell activation by Staphylococcus aureus Cowan I and pokeweed mitogen. J Clin Invest. 1986 Jan;77(1):294–300. doi: 10.1172/JCI112290. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Teshigawara K., Wang H. M., Kato K., Smith K. A. Interleukin 2 high-affinity receptor expression requires two distinct binding proteins. J Exp Med. 1987 Jan 1;165(1):223–238. doi: 10.1084/jem.165.1.223. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Villa M. L., Valenti F., Scaglione F., Falchi M., Fraschini F. In-vivo and in-vitro interference of antibiotics with antigen-specific antibody responses: effect of josamycin. J Antimicrob Chemother. 1989 Nov;24(5):765–774. doi: 10.1093/jac/24.5.765. [DOI] [PubMed] [Google Scholar]
- Wildfeuer A., Laufen H., Müller-Wening D., Haferkamp O. Interaction of azithromycin and human phagocytic cells. Uptake of the antibiotic and the effect on the survival of ingested bacteria in phagocytes. Arzneimittelforschung. 1989 Jul;39(7):755–758. [PubMed] [Google Scholar]
- Wise R. The development of macrolides and related compounds. J Antimicrob Chemother. 1989 Mar;23(3):299–300. doi: 10.1093/jac/23.3.299. [DOI] [PubMed] [Google Scholar]
- Wood M. J. More macrolides. BMJ. 1991 Sep 14;303(6803):594–595. doi: 10.1136/bmj.303.6803.594. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van Rensburg C. E., Anderson R., Jooné G., van der Merwe M., van Rensburg A. J. Effects of erythromycin on cellular and humoral immune functions in vitro and in vivo. J Antimicrob Chemother. 1981 Dec;8(6):467–474. doi: 10.1093/jac/8.6.467. [DOI] [PubMed] [Google Scholar]