Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1993 Sep;37(9):1816–1825. doi: 10.1128/aac.37.9.1816

In vitro and in vivo disposition and metabolism of 3'-deoxy-2',3'-didehydrothymidine.

E M Cretton 1, Z Zhou 1, L B Kidd 1, H M McClure 1, S Kaul 1, M J Hitchcock 1, J P Sommadossi 1
PMCID: PMC188075  PMID: 8239589

Abstract

The disposition and metabolic fate of 3'-deoxy-2',3'-didehydrothymidine (D4T) were evaluated both in isolated hepatocytes and in nonhuman primates. Rapid formation of thymine and beta-aminoisobutyric acid (BAIBA) occurred following incubation of hepatocytes with 10 microM [5(-3)H]D4T. Substantial levels of tritiated water were also detected. Exposure of cells to D4T in the presence of either 1 mM thymine or 10 microM benzyloxybenzyluracil, an inhibitor of dihydropyrimidine dehydrogenase, decreased intracellular BAIBA levels by approximately 89 and 63%, respectively. Concurrently, [3H]thymine levels increased two- to fivefold. These results are consistent with D4T being cleaved to thymine, which is then degraded to BAIBA. A similar metabolic disposition was observed in monkeys following administration of 25 mg of [5(-3)H]D4T per kg of body weight. BAIBA, thymine, and tritiated water were identified in plasma and urine. Approximately 50% of the administered dose was recovered in urine within 24 h, with the majority of the radioactivity representing unchanged drug. After administration intravenously or orally of 25 mg of [4(-14)C]D4T per kg of body weight to monkeys, a novel metabolite, designated X, in addition to unchanged D4T, thymine, and BAIBA, was also detected. The sum of the three metabolites and unchanged drug accounted for virtually all of the radioactivity in plasma and urine. Thymine and X exhibited kinetic profiles similar to that of D4T, with plasma elimination half-life of 2 to 3 h, whereas BAIBA levels remained constant for extended periods and declined slowly; this metabolite could be detected 24 h after intravenous drug administration. Mean oral bioavailability of D4T was high at approximately 70%. As observed in the [5(-3)H]D4T study performed in monkeys, approximately half of the administered [4(-14)C]D4T was recovered unchanged. The remainder was not recovered in urine or feces collected up to 30 days after drug administration. These data suggest that D4T metabolites are further metabolized by salvage pathways and/or converted to biological macromolecules.

Full text

PDF
1816

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. August E. M., Birks E. M., Prusoff W. H. 3'-Deoxythymidin-2'-ene permeation of human lymphocyte H9 cells by nonfacilitated diffusion. Mol Pharmacol. 1991 Feb;39(2):246–249. [PubMed] [Google Scholar]
  2. Balzarini J., Herdewijn P., De Clercq E. Differential patterns of intracellular metabolism of 2',3'-didehydro-2',3'-dideoxythymidine and 3'-azido-2',3'-dideoxythymidine, two potent anti-human immunodeficiency virus compounds. J Biol Chem. 1989 Apr 15;264(11):6127–6133. [PubMed] [Google Scholar]
  3. Berry M. N., Friend D. S. High-yield preparation of isolated rat liver parenchymal cells: a biochemical and fine structural study. J Cell Biol. 1969 Dec;43(3):506–520. doi: 10.1083/jcb.43.3.506. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Boudinot F. D., Schinazi R. F., Gallo J. M., McClure H. M., Anderson D. C., Doshi K. J., Kambhampathi P. C., Chu C. K. 3'-Azido-2',3'-dideoxyuridine (AzddU): comparative pharmacokinetics with 3'-azido-3'-deoxythymidine (AZT) in monkeys. AIDS Res Hum Retroviruses. 1990 Feb;6(2):219–228. doi: 10.1089/aid.1990.6.219. [DOI] [PubMed] [Google Scholar]
  5. CANELLAKIS E. S. Pyrimidine metabolism. I. Enzymatic pathways of uracil and thymine degradation. J Biol Chem. 1956 Jul;221(1):315–322. [PubMed] [Google Scholar]
  6. Chen C. H., Vazquez-Padua M., Cheng Y. C. Effect of anti-human immunodeficiency virus nucleoside analogs on mitochondrial DNA and its implication for delayed toxicity. Mol Pharmacol. 1991 May;39(5):625–628. [PubMed] [Google Scholar]
  7. Cretton E. M., Schinazi R. F., McClure H. M., Anderson D. C., Sommadossi J. P. Pharmacokinetics of 3'-azido-3'-deoxythymidine and its catabolites and interactions with probenecid in rhesus monkeys. Antimicrob Agents Chemother. 1991 May;35(5):801–807. doi: 10.1128/aac.35.5.801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cretton E. M., Xie M. Y., Bevan R. J., Goudgaon N. M., Schinazi R. F., Sommadossi J. P. Catabolism of 3'-azido-3'-deoxythymidine in hepatocytes and liver microsomes, with evidence of formation of 3'-amino-3'-deoxythymidine, a highly toxic catabolite for human bone marrow cells. Mol Pharmacol. 1991 Feb;39(2):258–266. [PubMed] [Google Scholar]
  9. Cretton E. M., Xie M. Y., Goudgaon N. M., Schinazi R. F., Chu C. K., Sommadossi J. P. Catabolic disposition of 3'-azido-2',3'-dideoxyuridine in hepatocytes with evidence of azido reduction being a general catabolic pathway of 3'-azido-2',3'-dideoxynucleosides. Biochem Pharmacol. 1992 Sep 1;44(5):973–980. doi: 10.1016/0006-2952(92)90130-b. [DOI] [PubMed] [Google Scholar]
  10. Daher G. C., Naguib F. N., el Kouni M. H., Zhang R. W., Soong S. J., Diasio R. B. Inhibition of fluoropyrimidine catabolism by benzyloxybenzyluracil. Possible relevance to regional chemotherapy. Biochem Pharmacol. 1991 Jun 15;41(12):1887–1893. doi: 10.1016/0006-2952(91)90128-r. [DOI] [PubMed] [Google Scholar]
  11. Dudley M. N., Graham K. K., Kaul S., Geletko S., Dunkle L., Browne M., Mayer K. Pharmacokinetics of stavudine in patients with AIDS or AIDS-related complex. J Infect Dis. 1992 Sep;166(3):480–485. doi: 10.1093/infdis/166.3.480. [DOI] [PubMed] [Google Scholar]
  12. Griffith O. W. Beta-amino acids: mammalian metabolism and utility as alpha-amino acid analogues. Annu Rev Biochem. 1986;55:855–878. doi: 10.1146/annurev.bi.55.070186.004231. [DOI] [PubMed] [Google Scholar]
  13. Ho H. T., Hitchcock M. J. Cellular pharmacology of 2',3'-dideoxy-2',3'-didehydrothymidine, a nucleoside analog active against human immunodeficiency virus. Antimicrob Agents Chemother. 1989 Jun;33(6):844–849. doi: 10.1128/aac.33.6.844. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Iltzsch M. H., el Kouni M. H., Cha S. Kinetic studies of thymidine phosphorylase from mouse liver. Biochemistry. 1985 Nov 19;24(24):6799–6807. doi: 10.1021/bi00345a011. [DOI] [PubMed] [Google Scholar]
  15. Kwan K. C., Till A. E. Novel method for bioavailability assessment. J Pharm Sci. 1973 Sep;62(9):1494–1497. doi: 10.1002/jps.2600620923. [DOI] [PubMed] [Google Scholar]
  16. Lin T. S., Schinazi R. F., Prusoff W. H. Potent and selective in vitro activity of 3'-deoxythymidin-2'-ene (3'-deoxy-2',3'-didehydrothymidine) against human immunodeficiency virus. Biochem Pharmacol. 1987 Sep 1;36(17):2713–2718. doi: 10.1016/0006-2952(87)90253-x. [DOI] [PubMed] [Google Scholar]
  17. Mansuri M. M., Starrett J. E., Jr, Ghazzouli I., Hitchcock M. J., Sterzycki R. Z., Brankovan V., Lin T. S., August E. M., Prusoff W. H., Sommadossi J. P. 1-(2,3-Dideoxy-beta-D-glycero-pent-2-enofuranosyl)thymine. A highly potent and selective anti-HIV agent. J Med Chem. 1989 Feb;32(2):461–466. doi: 10.1021/jm00122a029. [DOI] [PubMed] [Google Scholar]
  18. Niemann M. A., Berech J., Jr Thymidine catabolism and the reutilization of its degradative products in Tetrahymena pyriformis. Metabolism of [2,6-14C2]thymidine and [2-14C]methylmalonic acid. Biochim Biophys Acta. 1981 Feb 26;652(2):347–353. doi: 10.1016/0005-2787(81)90124-6. [DOI] [PubMed] [Google Scholar]
  19. RUBINI J. R., CRONKITE E. P., BOND V. P., FLIEDNER T. M. The metabolism and fate of tritiated thymidine in man. J Clin Invest. 1960 Jun;39:909–918. doi: 10.1172/JCI104111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Russell J. W., Whiterock V. J., Marrero D., Klunk L. J. Disposition in animals of a new anti-HIV agent: 2',3'-didehydro-3'-deoxythymidine. Drug Metab Dispos. 1990 Mar-Apr;18(2):153–157. [PubMed] [Google Scholar]
  21. Schinazi R. F., Peck A., Sommadossi J. P. Substrate specificity of Escherichia coli thymidine phosphorylase for pyrimidine nucleosides with anti-human immunodeficiency virus activity. Biochem Pharmacol. 1992 Jul 22;44(2):199–204. doi: 10.1016/0006-2952(92)90001-y. [DOI] [PubMed] [Google Scholar]
  22. Sommadossi J. P., Gewirtz D. A., Diasio R. B., Aubert C., Cano J. P., Goldman I. D. Rapid catabolism of 5-fluorouracil in freshly isolated rat hepatocytes as analyzed by high performance liquid chromatography. J Biol Chem. 1982 Jul 25;257(14):8171–8176. [PubMed] [Google Scholar]
  23. Sommadossi J. P. Nucleoside analogs: similarities and differences. Clin Infect Dis. 1993 Feb;16 (Suppl 1):S7–15. doi: 10.1093/clinids/16.supplement_1.s7. [DOI] [PubMed] [Google Scholar]
  24. Yamaoka K., Nakagawa T., Uno T. Application of Akaike's information criterion (AIC) in the evaluation of linear pharmacokinetic equations. J Pharmacokinet Biopharm. 1978 Apr;6(2):165–175. doi: 10.1007/BF01117450. [DOI] [PubMed] [Google Scholar]
  25. Zhu Z., Hitchcock M. J., Sommadossi J. P. Metabolism and DNA interaction of 2',3'-didehydro-2',3'-dideoxythymidine in human bone marrow cells. Mol Pharmacol. 1991 Nov;40(5):838–845. [PubMed] [Google Scholar]
  26. Zhu Z., Ho H. T., Hitchcock M. J., Sommadossi J. P. Cellular pharmacology of 2',3'-didehydro-2',3'-dideoxythymidine (D4T) in human peripheral blood mononuclear cells. Biochem Pharmacol. 1990 May 1;39(9):R15–R19. doi: 10.1016/0006-2952(90)90418-k. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES