Abstract
Wistar Furth (WF) rats were studied and compared with Sprague-Dawley (SD) rats to determine if ultrastructural abnormalities in platelets or megakaryocytes could explain their macrothrombocytopenia. WF rats had one third of the platelet count of healthy rats and two times the platelet volume. Megakaryocyte number was decreased and the size of mature stage three megakaryocytes also was decreased. WF platelets had large membranous inclusions, and otherwise showed normal ultrastructural morphology. The WF megakaryocytes showed abnormal aggregates of the demarcation membrane system. Ruthenium red staining was more intense on WF megakaryocytes and platelets, indicating a possible increase in surface mucopolysaccharides. It is possible that abnormal megakaryocyte membrane structure may lead to WF macrothrombocytopenia.
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BRECHER G., CRONKITE E. P. Morphology and enumeration of human blood platelets. J Appl Physiol. 1950 Dec;3(6):365–377. doi: 10.1152/jappl.1950.3.6.365. [DOI] [PubMed] [Google Scholar]
- BRECHER G., SCHNEIDERMAN M. A time-saving device for the counting of reticulocytes. Am J Clin Pathol. 1950 Nov;20(11):1079–1083. doi: 10.1093/ajcp/20.11_ts.1079. [DOI] [PubMed] [Google Scholar]
- Behnke O. An electron microscope study of the megacaryocyte of the rat bone marrow. I. The development of the demarcation membrane system and the platelet surface coat. J Ultrastruct Res. 1968 Sep;24(5):412–433. doi: 10.1016/s0022-5320(68)80046-2. [DOI] [PubMed] [Google Scholar]
- Behrens W. E. Mediterranean macrothrombocytopenia. Blood. 1975 Aug;46(2):199–208. [PubMed] [Google Scholar]
- Bentfeld-Barker M. E., Bainton D. F. Ultrastructure of rat megakaryocytes after prolonged thrombocytopenia. J Ultrastruct Res. 1977 Nov;61(2):201–214. doi: 10.1016/s0022-5320(77)80087-7. [DOI] [PubMed] [Google Scholar]
- Breton-Gorius J. Development of two distinct membrane systems associated in giant complexes in pathological megakaryocytes. Ser Haematol. 1975;8(1):49–67. [PubMed] [Google Scholar]
- Burstein S. A., Adamson J. W., Erb S. K., Harker L. A. Megakaryocytopoiesis in the mouse: response to varying platelet demand. J Cell Physiol. 1981 Nov;109(2):333–341. doi: 10.1002/jcp.1041090217. [DOI] [PubMed] [Google Scholar]
- EBBE S., STOHLMAN F., Jr MEGAKARYOCYTOPOIESIS IN THE RAT. Blood. 1965 Jul;26:20–35. [PubMed] [Google Scholar]
- Ebbe S., Howard D., Phalen E., Stohlman F., Jr Effects of vincristine on normal and stimulated megakaryocytopoiesis in the rat. Br J Haematol. 1975 Apr;29(4):593–603. doi: 10.1111/j.1365-2141.1975.tb02746.x. [DOI] [PubMed] [Google Scholar]
- Ebbe S., Stohlman F., Jr, Donovan J., Overcash J. Megakaryocyte maturation rate in thrombocytopenic rats. Blood. 1968 Nov;32(5):787–795. [PubMed] [Google Scholar]
- Ebbe S., Stohlman F., Jr, Overcash J., Donovan J., Howard D. Megakaryocyte size in thrombocytopenic and normal rats. Blood. 1968 Sep;32(3):383–392. [PubMed] [Google Scholar]
- Epstein C. J., Sahud M. A., Piel C. F., Goodman J. R., Bernfield M. R., Kushner J. H., Ablin A. R. Hereditary macrothrombocytopathia, nephritis and deafness. Am J Med. 1972 Mar;52(3):299–310. doi: 10.1016/0002-9343(72)90017-4. [DOI] [PubMed] [Google Scholar]
- Hyde P., Zucker-Franklin D. Antigenic differences between human platelets and megakaryocytes. Am J Pathol. 1987 May;127(2):349–357. [PMC free article] [PubMed] [Google Scholar]
- Leven R. M., Nachmias V. T. Cultured megakaryocytes: changes in the cytoskeleton after ADP-induced spreading. J Cell Biol. 1982 Feb;92(2):313–323. doi: 10.1083/jcb.92.2.313. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MacPherson G. G. Origin and development of the demarcation system in megakaryocytes of rat bone marrow. J Ultrastruct Res. 1972 Jul;40(1):167–177. doi: 10.1016/s0022-5320(72)80030-3. [DOI] [PubMed] [Google Scholar]
- ODELL T. T., Jr, McDONALD T. P., ASANO M. Response of rat megakaryocytes and platelets to bleeding. Acta Haematol. 1962;27:171–179. doi: 10.1159/000206778. [DOI] [PubMed] [Google Scholar]
- Odell T. T., Jr, Jackson C. W., Friday T. J., Charsha D. E. Effects of thrombocytopenia on megakaryocytopoiesis. Br J Haematol. 1969 Jul;17(1):91–101. doi: 10.1111/j.1365-2141.1969.tb05667.x. [DOI] [PubMed] [Google Scholar]
- Odell T. T., Murphy J. R., Jackson C. W. Stimulation of megakaryocytopoiesis by acute thrombocytopenia in rats. Blood. 1976 Nov;48(5):765–775. [PubMed] [Google Scholar]
- Pate J. L., Ordal E. J. The fine structure of Chondrococcus columnaris. 3. The surface layers of Chondrococcus columnaris. J Cell Biol. 1967 Oct;35(1):37–51. doi: 10.1083/jcb.35.1.37. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Penington D. G., Olsen T. E. Megakaryocytes in states of altered platelet production: cell numbers, size and DNA content. Br J Haematol. 1970 Apr;18(4):447–463. doi: 10.1111/j.1365-2141.1970.tb01458.x. [DOI] [PubMed] [Google Scholar]
- Rolovic Z., Baldini M., Dameshek W. Megakaryocytopoiesis in experimentally induced immune thrombocytopenia. Blood. 1970 Feb;35(2):173–188. [PubMed] [Google Scholar]
- Tablin F., Taube D. Platelet intermediate filaments: detection of a vimentinlike protein in human and bovine platelets. Cell Motil Cytoskeleton. 1987;8(1):61–67. doi: 10.1002/cm.970080109. [DOI] [PubMed] [Google Scholar]
- Threatte G. A., Adrados C., Ebbe S., Brecher G. Mean platelet volume: the need for a reference method. Am J Clin Pathol. 1984 Jun;81(6):769–772. doi: 10.1093/ajcp/81.6.769. [DOI] [PubMed] [Google Scholar]
- Zucker-Franklin D., Petursson S. Thrombocytopoiesis--analysis by membrane tracer and freeze-fracture studies on fresh human and cultured mouse megakaryocytes. J Cell Biol. 1984 Aug;99(2):390–402. doi: 10.1083/jcb.99.2.390. [DOI] [PMC free article] [PubMed] [Google Scholar]