Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1994 May;38(5):1059–1064. doi: 10.1128/aac.38.5.1059

Antibiotic penetration of and bactericidal activity within endothelial cells.

R O Darouiche 1, R J Hamill 1
PMCID: PMC188150  PMID: 8067738

Abstract

It has been observed that the number of cases of infective endocarditis arising in patients who have no previous identifiable cardiac abnormalities is increasing, suggesting that direct bacterial interactions with endothelium may occur. Furthermore, the prolonged natural history of endocarditis, need for lengthy therapy, and frequency of relapse suggest that intracellular bacteria that may be protected from antimicrobial action and host responses exist. Using high-performance liquid chromatography, we investigated the penetration of seven antibiotics used to treat Staphylococcus aureus infections into cultured human umbilical vein endothelial cells and the effect of these antibiotics on the intracellular killing of two strains of the organism. In general, endothelial cell penetration of lipophilic drugs, such as minocycline, ciprofloxacin, and rifampin, exceeded that of hydrophilic drugs, represented by nafcillin, cefazolin, cefuroxime, and vancomycin. Bacterial killing paralleled the intracellular penetration of all the antibiotics except rifampin, which concentrated well inside cells but had poor killing activity. However, when combined with the other antibiotics, rifampin potentiated their killing activity against intracellular S. aureus.

Full text

PDF
1059

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beam T. R., Jr Sequestration of staphylococci at an inaccessible focus. Lancet. 1979 Aug 4;2(8136):227–228. doi: 10.1016/s0140-6736(79)90239-3. [DOI] [PubMed] [Google Scholar]
  2. Brown K. N., Percival A. Penetration of antimicrobials into tissue culture cells and leucocytes. Scand J Infect Dis Suppl. 1978;(14):251–260. [PubMed] [Google Scholar]
  3. Buggy B. P., Schaberg D. R., Swartz R. D. Intraleukocytic sequestration as a cause of persistent Staphylococcus aureus peritonitis in continuous ambulatory peritoneal dialysis. Am J Med. 1984 Jun;76(6):1035–1040. doi: 10.1016/0002-9343(84)90854-4. [DOI] [PubMed] [Google Scholar]
  4. COTRAN R. S. ENDOTHELIAL PHAGOCYTOSIS: AN ELECTRON-MICROSPOPIC STUDY. Exp Mol Pathol. 1965 Apr;28:217–231. doi: 10.1016/0014-4800(65)90034-1. [DOI] [PubMed] [Google Scholar]
  5. Campbell K. M., Johnson C. M. Identification of Staphylococcus aureus binding proteins on isolated porcine cardiac valve cells. J Lab Clin Med. 1990 Feb;115(2):217–223. [PubMed] [Google Scholar]
  6. Chambers H. F., Sande M. A. Teicoplanin versus nafcillin and vancomycin in the treatment of experimental endocarditis caused by methicillin-susceptible or -resistant Staphylococcus aureus. Antimicrob Agents Chemother. 1984 Jul;26(1):61–64. doi: 10.1128/aac.26.1.61. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Comstock L. E., Thomas D. D. Penetration of endothelial cell monolayers by Borrelia burgdorferi. Infect Immun. 1989 May;57(5):1626–1628. doi: 10.1128/iai.57.5.1626-1628.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Darouiche R., Wright C., Hamill R., Koza M., Lewis D., Markowski J. Eradication of colonization by methicillin-resistant Staphylococcus aureus by using oral minocycline-rifampin and topical mupirocin. Antimicrob Agents Chemother. 1991 Aug;35(8):1612–1615. doi: 10.1128/aac.35.8.1612. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Durack D. T., Beeson P. B. Experimental bacterial endocarditis. I. Colonization of a sterile vegetation. Br J Exp Pathol. 1972 Feb;53(1):44–49. [PMC free article] [PubMed] [Google Scholar]
  10. Dworkin R. J., Lee B. L., Sande M. A., Chambers H. F. Treatment of right-sided Staphylococcus aureus endocarditis in intravenous drug users with ciprofloxacin and rifampicin. Lancet. 1989 Nov 4;2(8671):1071–1073. doi: 10.1016/s0140-6736(89)91083-0. [DOI] [PubMed] [Google Scholar]
  11. Eng R. H., Padberg F. T., Smith S. M., Tan E. N., Cherubin C. E. Bactericidal effects of antibiotics on slowly growing and nongrowing bacteria. Antimicrob Agents Chemother. 1991 Sep;35(9):1824–1828. doi: 10.1128/aac.35.9.1824. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hamill R. J. Role of fibronectin in infective endocarditis. Rev Infect Dis. 1987 Jul-Aug;9 (Suppl 4):S360–S371. doi: 10.1093/clinids/9.supplement_4.s360. [DOI] [PubMed] [Google Scholar]
  13. Hamill R. J., Vann J. M., Proctor R. A. Phagocytosis of Staphylococcus aureus by cultured bovine aortic endothelial cells: model for postadherence events in endovascular infections. Infect Immun. 1986 Dec;54(3):833–836. doi: 10.1128/iai.54.3.833-836.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hand W. L., King-Thompson N. L. Contrasts between phagocyte antibiotic uptake and subsequent intracellular bactericidal activity. Antimicrob Agents Chemother. 1986 Jan;29(1):135–140. doi: 10.1128/aac.29.1.135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Holmes B., Quie P. G., Windhorst D. B., Pollara B., Good R. A. Protection of phagocytized bacteria from the killing action of antibiotics. Nature. 1966 Jun 11;210(5041):1131–1132. doi: 10.1038/2101131a0. [DOI] [PubMed] [Google Scholar]
  16. Horwitz M. A., Silverstein S. C. Intracellular multiplication of Legionnaires' disease bacteria (Legionella pneumophila) in human monocytes is reversibly inhibited by erythromycin and rifampin. J Clin Invest. 1983 Jan;71(1):15–26. doi: 10.1172/JCI110744. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Johnson C. M., Hancock G. A., Goulin G. D. Specific binding of Staphylococcus aureus to cultured porcine cardiac valvular endothelial cells. J Lab Clin Med. 1988 Jul;112(1):16–22. [PubMed] [Google Scholar]
  18. Karlowsky J. A., Zhanel G. G. Concepts on the use of liposomal antimicrobial agents: applications for aminoglycosides. Clin Infect Dis. 1992 Oct;15(4):654–667. doi: 10.1093/clind/15.4.654. [DOI] [PubMed] [Google Scholar]
  19. Kaye D. Changing pattern of infective endocarditis. Am J Med. 1985 Jun 28;78(6B):157–162. doi: 10.1016/0002-9343(85)90378-x. [DOI] [PubMed] [Google Scholar]
  20. Klotz S. A., Drutz D. J., Harrison J. L., Huppert M. Adherence and penetration of vascular endothelium by Candida yeasts. Infect Immun. 1983 Oct;42(1):374–384. doi: 10.1128/iai.42.1.374-384.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Koga H. High-performance liquid chromatography measurement of antimicrobial concentrations in polymorphonuclear leukocytes. Antimicrob Agents Chemother. 1987 Dec;31(12):1904–1908. doi: 10.1128/aac.31.12.1904. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lawlor M. T., Sullivan M. C., Levitz R. E., Quintiliani R., Nightingale C. Treatment of prosthetic valve endocarditis due to methicillin-resistant Staphylococcus aureus with minocycline. J Infect Dis. 1990 Apr;161(4):812–814. doi: 10.1093/infdis/161.4.812. [DOI] [PubMed] [Google Scholar]
  23. Levine D. P., Fromm B. S., Reddy B. R. Slow response to vancomycin or vancomycin plus rifampin in methicillin-resistant Staphylococcus aureus endocarditis. Ann Intern Med. 1991 Nov 1;115(9):674–680. doi: 10.7326/0003-4819-115-9-674. [DOI] [PubMed] [Google Scholar]
  24. Lowy F. D., Fant J., Higgins L. L., Ogawa S. K., Hatcher V. B. Staphylococcus aureus--human endothelial cell interactions. J Ultrastruct Mol Struct Res. 1988 Feb;98(2):137–146. doi: 10.1016/s0889-1605(88)80906-6. [DOI] [PubMed] [Google Scholar]
  25. MACKANESS G. B., SMITH N. The action of isoniazid (isonicotinic acid hydrazide) on intracellular tubercle bacilli. Am Rev Tuberc. 1952 Aug;66(2):125–133. doi: 10.1164/art.1952.66.2.125. [DOI] [PubMed] [Google Scholar]
  26. Macneal W. J., Spence M. J., Slavkin A. E. Early Lesions of Experimental Endocarditis Lenta. Am J Pathol. 1943 Sep;19(5):735–749. [PMC free article] [PubMed] [Google Scholar]
  27. Mandell G. L., Vest T. K. Killing of intraleukocytic Staphylococcus aureus by rifampin: in-vitro and in-vivo studies. J Infect Dis. 1972 May;125(5):486–490. doi: 10.1093/infdis/125.5.486. [DOI] [PubMed] [Google Scholar]
  28. Ogawa S. K., Yurberg E. R., Hatcher V. B., Levitt M. A., Lowy F. D. Bacterial adherence to human endothelial cells in vitro. Infect Immun. 1985 Oct;50(1):218–224. doi: 10.1128/iai.50.1.218-224.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Proctor R. A., Christman G., Mosher D. F. Fibronectin-induced agglutination of Staphylococcus aureus correlates with invasiveness. J Lab Clin Med. 1984 Oct;104(4):455–469. [PubMed] [Google Scholar]
  30. Renard C., Vanderhaeghe H. J., Claes P. J., Zenebergh A., Tulkens P. M. Influence of conversion of penicillin G into a basic derivative on its accumulation and subcellular localization in cultured macrophages. Antimicrob Agents Chemother. 1987 Mar;31(3):410–416. doi: 10.1128/aac.31.3.410. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Rotrosen D., Edwards J. E., Jr, Gibson T. R., Moore J. C., Cohen A. H., Green I. Adherence of Candida to cultured vascular endothelial cells: mechanisms of attachment and endothelial cell penetration. J Infect Dis. 1985 Dec;152(6):1264–1274. doi: 10.1093/infdis/152.6.1264. [DOI] [PubMed] [Google Scholar]
  32. Ryan U. S., Schultz D. R., Goodwin J. D., Vann J. M., Selvaraj M. P., Hart M. A. Role of C1q in phagocytosis of Salmonella minnesota by pulmonary endothelial cells. Infect Immun. 1989 May;57(5):1356–1362. doi: 10.1128/iai.57.5.1356-1362.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Scheld W. M., Valone J. A., Sande M. A. Bacterial adherence in the pathogenesis of endocarditis. Interaction of bacterial dextran, platelets, and fibrin. J Clin Invest. 1978 May;61(5):1394–1404. doi: 10.1172/JCI109057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Schwab J. C., Mandell G. L. The importance of penetration of antimicrobial agents into cells. Infect Dis Clin North Am. 1989 Sep;3(3):461–467. [PubMed] [Google Scholar]
  35. Segreti J., Gvazdinskas L. C., Trenholme G. M. In vitro activity of minocycline and rifampin against staphylococci. Diagn Microbiol Infect Dis. 1989 May-Jun;12(3):253–255. doi: 10.1016/0732-8893(89)90022-9. [DOI] [PubMed] [Google Scholar]
  36. Solberg C. O. Protection of phagocytized bacteria against antibiotics. A new method for the evaluation of neutrophil granulocyte functions. Acta Med Scand. 1972 May;191(5):383–387. [PubMed] [Google Scholar]
  37. Thompson R. L. Staphylococcal infective endocarditis. Mayo Clin Proc. 1982 Feb;57(2):106–114. [PubMed] [Google Scholar]
  38. Tompkins D. C., Hatcher V. B., Patel D., Orr G. A., Higgins L. L., Lowy F. D. A human endothelial cell membrane protein that binds Staphylococcus aureus in vitro. J Clin Invest. 1990 Apr;85(4):1248–1254. doi: 10.1172/JCI114560. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Tulkens P. M. Intracellular distribution and activity of antibiotics. Eur J Clin Microbiol Infect Dis. 1991 Feb;10(2):100–106. doi: 10.1007/BF01964420. [DOI] [PubMed] [Google Scholar]
  40. Vann J. M., Proctor R. A. Ingestion of Staphylococcus aureus by bovine endothelial cells results in time- and inoculum-dependent damage to endothelial cell monolayers. Infect Immun. 1987 Sep;55(9):2155–2163. doi: 10.1128/iai.55.9.2155-2163.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Walker T. S. Rickettsial interactions with human endothelial cells in vitro: adherence and entry. Infect Immun. 1984 May;44(2):205–210. doi: 10.1128/iai.44.2.205-210.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Yuk J. H., Dignani M. C., Harris R. L., Bradshaw M. W., Williams T. W., Jr Minocycline as an alternative antistaphylococcal agent. Rev Infect Dis. 1991 Sep-Oct;13(5):1023–1024. doi: 10.1093/clinids/13.5.1023. [DOI] [PubMed] [Google Scholar]
  43. Zimmerli W., Lew P. D., Suter S., Wyss M., Waldvogel F. A. In vitro efficacy of several antibiotics against intracellular S. aureus in chronic granulomatous disease. Helv Paediatr Acta. 1983 Mar;38(1):51–61. [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES