Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1994 May;38(5):1065–1070. doi: 10.1128/aac.38.5.1065

Aminoglycoside-induced increase of intracellular calcium in LLC-PK1 cells due to an artifact caused by trypsin and EDTA.

S J Kohlhepp 1, K Hermsmeyer 1, R A Land 1, D N Gilbert 1
PMCID: PMC188151  PMID: 8067739

Abstract

Dietary calcium supplements attenuate experimental aminoglycoside nephrotoxicity. In cultured renal tubular cells, intracellular calcium levels have been reported to rise with aminoglycoside addition to the culture medium. In experiments designed to verify the in vitro influence of calcium on cultured kidney cells, we detected an unexpected artifact. When we resuspended cultured LLC-PK1 cells with trypsin and EDTA to measure intracellular calcium levels, our results correlated well with previously reported values. However, we saw no increase in intracellular calcium levels when we measured them by digital imaging video microscopy unless trypsin-EDTA exposure preceded aminoglycoside exposure. This apparent artifact should be considered in any study of the effects of various agents on intracellular calcium levels.

Full text

PDF
1065

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bennett W. M., Elliott W. C., Houghton D. C., Gilbert D. N., DeFehr J., McCarron D. A. Reduction of experimental gentamicin nephrotoxicity in rats by dietary calcium loading. Antimicrob Agents Chemother. 1982 Sep;22(3):508–512. doi: 10.1128/aac.22.3.508. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bonventre J. V., Cheung J. Y. Cytosolic free calcium concentration in cultured renal epithelial cells. Am J Physiol. 1986 Feb;250(2 Pt 2):F329–F338. doi: 10.1152/ajprenal.1986.250.2.F329. [DOI] [PubMed] [Google Scholar]
  3. Cornwell T. L., Lincoln T. M. Regulation of phosphorylase A formation and calcium content in aortic smooth muscle and smooth muscle cells: effects of atrial natriuretic peptide II. J Pharmacol Exp Ther. 1988 Nov;247(2):524–530. [PubMed] [Google Scholar]
  4. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  5. Holohan P. D., Sokol P. P., Ross C. R., Coulson R., Trimble M. E., Laska D. A., Williams P. D. Gentamicin-induced increases in cytosolic calcium in pig kidney cells (LLC-PK1). J Pharmacol Exp Ther. 1988 Oct;247(1):349–354. [PubMed] [Google Scholar]
  6. Humes H. D., Sastrasinh M., Weinberg J. M. Calcium is a competitive inhibitor of gentamicin-renal membrane binding interactions and dietary calcium supplementation protects against gentamicin nephrotoxicity. J Clin Invest. 1984 Jan;73(1):134–147. doi: 10.1172/JCI111184. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Inui K., Saito H., Iwata T., Hori R. Aminoglycoside-induced alterations in apical membranes of kidney epithelial cell line (LLC-PK1). Am J Physiol. 1988 Feb;254(2 Pt 1):C251–C257. doi: 10.1152/ajpcell.1988.254.2.C251. [DOI] [PubMed] [Google Scholar]
  8. Lever J. E. Expression of differentiated functions in kidney epithelial cell lines. Miner Electrolyte Metab. 1986;12(1):14–19. [PubMed] [Google Scholar]
  9. McGlynn H., Ryan M. P. Gentamicin nephrotoxicity in rat renal proximal tubular cells. Toxicol Lett. 1990 Sep;53(1-2):197–200. doi: 10.1016/0378-4274(90)90125-6. [DOI] [PubMed] [Google Scholar]
  10. Morgan K. G. Ca2+i versus [Ca2+]i. Biophys J. 1993 Aug;65(2):561–562. doi: 10.1016/S0006-3495(93)81087-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Quarum M. L., Houghton D. C., Gilbert D. N., McCarron D. A., Bennett W. M. Increasing dietary calcium moderates experimental gentamicin nephrotoxicity. J Lab Clin Med. 1984 Jan;103(1):104–114. [PubMed] [Google Scholar]
  12. Saito H., Inui K., Hori R. Mechanisms of gentamicin transport in kidney epithelial cell line (LLC-PK1). J Pharmacol Exp Ther. 1986 Sep;238(3):1071–1076. [PubMed] [Google Scholar]
  13. Sastrasinh M., Weinberg J. M., Humes H. D. The effect of gentamicin on calcium uptake by renal mitochondria. Life Sci. 1982 Jun 28;30(26):2309–2315. doi: 10.1016/0024-3205(82)90258-2. [DOI] [PubMed] [Google Scholar]
  14. Schwertz D. W., Kreisberg J. I., Venkatachalam M. A. Gentamicin-induced alterations in pig kidney epithelial (LLC-PK1) cells in culture. J Pharmacol Exp Ther. 1986 Jan;236(1):254–262. [PubMed] [Google Scholar]
  15. Smith M. W., Ambudkar I. S., Phelps P. C., Regec A. L., Trump B. F. HgCl2-induced changes in cytosolic Ca2+ of cultured rabbit renal tubular cells. Biochim Biophys Acta. 1987 Nov 12;931(2):130–142. doi: 10.1016/0167-4889(87)90199-6. [DOI] [PubMed] [Google Scholar]
  16. Tang M. J., Weinberg J. M. Vasopressin-induced increases of cytosolic calcium in LLC-PK1 cells. Am J Physiol. 1986 Dec;251(6 Pt 2):F1090–F1095. doi: 10.1152/ajprenal.1986.251.6.F1090. [DOI] [PubMed] [Google Scholar]
  17. Tanihara H., Ohuchi T., Yoshimura N., Negishi M., Ito S. Heterogeneous response in calcium signaling by adrenergic and cholinergic stimulation in cultured bovine trabecular cells. Exp Eye Res. 1991 Apr;52(4):393–396. doi: 10.1016/0014-4835(91)90034-c. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES