Abstract
Inducible resistance to macrolide antibiotics in Streptomyces lividans involves MGT, a macrolide glycosyl transferase that utilizes UDP-glucose as cofactor. Substrates for MGT include macrolides with 12-, 14-, 15-, or 16-atom cyclic polyketide lactones (as in methymycin, erythromycin, azithromycin, or tylosin, respectively), although spiramycin and carbomycin are not apparently modified. The enzyme is specific for the 2'-OH group of saccharidic moieties attached to C-5 of the 16-atom lactone ring (corresponding to C-5 or C-3 in 14- or 12-atom lactones, respectively).
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Fornwald J. A., Schmidt F. J., Adams C. W., Rosenberg M., Brawner M. E. Two promoters, one inducible and one constitutive, control transcription of the Streptomyces lividans galactose operon. Proc Natl Acad Sci U S A. 1987 Apr;84(8):2130–2134. doi: 10.1073/pnas.84.8.2130. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hopwood D. A., Kieser T., Wright H. M., Bibb M. J. Plasmids, recombination and chromosome mapping in Streptomyces lividans 66. J Gen Microbiol. 1983 Jul;129(7):2257–2269. doi: 10.1099/00221287-129-7-2257. [DOI] [PubMed] [Google Scholar]
- Jenkins G., Cundliffe E. Cloning and characterization of two genes from Streptomyces lividans that confer inducible resistance to lincomycin and macrolide antibiotics. Gene. 1991 Dec 1;108(1):55–62. doi: 10.1016/0378-1119(91)90487-v. [DOI] [PubMed] [Google Scholar]
- Jenkins G., Zalacain M., Cundliffe E. Inducible ribosomal RNA methylation in Streptomyces lividans, conferring resistance to lincomycin. J Gen Microbiol. 1989 Dec;135(12):3281–3288. doi: 10.1099/00221287-135-12-3281. [DOI] [PubMed] [Google Scholar]
- Kuo M. S., Chirby D. G., Argoudelis A. D., Cialdella J. I., Coats J. H., Marshall V. P. Microbial glycosylation of erythromycin A. Antimicrob Agents Chemother. 1989 Dec;33(12):2089–2091. doi: 10.1128/aac.33.12.2089. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marshall V. P., Cialdella J. I., Baczynskyj L., Liggett W. F., Johnson R. A. Microbial O-phosphorylation of macrolide antibiotics. J Antibiot (Tokyo) 1989 Jan;42(1):132–134. doi: 10.7164/antibiotics.42.132. [DOI] [PubMed] [Google Scholar]
- O'Hara K., Kanda T., Ohmiya K., Ebisu T., Kono M. Purification and characterization of macrolide 2'-phosphotransferase from a strain of Escherichia coli that is highly resistant to erythromycin. Antimicrob Agents Chemother. 1989 Aug;33(8):1354–1357. doi: 10.1128/aac.33.8.1354. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Skeggs P. A., Thompson J., Cundliffe E. Methylation of 16S ribosomal RNA and resistance to aminoglycoside antibiotics in clones of Streptomyces lividans carrying DNA from Streptomyces tenjimariensis. Mol Gen Genet. 1985;200(3):415–421. doi: 10.1007/BF00425725. [DOI] [PubMed] [Google Scholar]
- Wiley P. F., Baczynskyj L., Dolak L. A., Cialdella J. I., Marshall V. P. Enzymatic phosphorylation of macrolide antibiotics. J Antibiot (Tokyo) 1987 Feb;40(2):195–201. doi: 10.7164/antibiotics.40.195. [DOI] [PubMed] [Google Scholar]
- Zalacain M., Cundliffe E. Methylation of 23S ribosomal RNA due to carB, an antibiotic-resistance determinant from the carbomycin producer, Streptomyces thermotolerans. Eur J Biochem. 1990 Apr 20;189(1):67–72. doi: 10.1111/j.1432-1033.1990.tb15460.x. [DOI] [PubMed] [Google Scholar]