Abstract
The metabolism of 6-dimethylaminopurine arabinoside (ara-DMAP), a potent inhibitor of varicella-zoster virus replication in vitro, was studied in rats and cynomolgus monkeys. Rats dosed intraperitoneally or orally with ara-DMAP excreted unchanged ara-DMAP and one major metabolite, 6-methylaminopurine arabinoside (ara-MAP), in the urine. They also excreted allantoin and small amounts (less than 4% of the dose each) of hypoxanthine arabinoside (ara-H) and adenine arabinoside (ara-A). The relative amount of each urinary metabolite excreted remained fairly constant for intraperitoneal ara-DMAP doses of 0.3 to 50 mg/kg of body weight. Rats pretreated with an inhibitor of microsomal N-demethylation, SKF-525-A, excreted more unchanged ara-DMAP and much less ara-MAP than did rats given ara-DMAP alone. Rats pretreated with the adenosine deaminase inhibitor deoxycoformycin excreted more ara-MAP and much less ara-H and allantoin. ara-MAP was shown to be a competitive alternative substrate inhibitor of adenosine deaminase (Ki = 16 microM). Rats given ara-DMAP intravenously rapidly converted it to ara-MAP and purine metabolism end products; however, ara-A generated from ara-DMAP had a half-life that was four times longer than that of ara-A given intravenously. In contrast to rats, cynomolgus monkeys dosed intravenously with ara-DMAP formed ara-H as the major plasma and urinary end metabolite. Rat liver microsomes demethylated ara-DMAP much more rapidly than human liver microsomes did. ara-DMAP is initially N-demethylated by microsomal enzymes to form ara-MAP. This metabolite is further metabolized by either adenosine deaminase, which removes methylamine to form ara-H, or by microsomal enzymes, which remove the second methyl group to form ara-A.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Agarwal R. P., Spector T., Parks R. E., Jr Tight-binding inhibitors--IV. Inhibition of adenosine deaminases by various inhibitors. Biochem Pharmacol. 1977 Mar 1;26(5):359–367. doi: 10.1016/0006-2952(77)90192-7. [DOI] [PubMed] [Google Scholar]
- Averett D. R., Koszalka G. W., Fyfe J. A., Roberts G. B., Purifoy D. J., Krenitsky T. A. 6-Methoxypurine arabinoside as a selective and potent inhibitor of varicella-zoster virus. Antimicrob Agents Chemother. 1991 May;35(5):851–857. doi: 10.1128/aac.35.5.851. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baron J., Tephly T. R. Further studies on the relationship of the stimulatory effects of phenobarbital and 3,4-benzpyrene on hepatic heme synthesis to their effects on hepatic microsomal drug oxidations. Arch Biochem Biophys. 1970 Aug;139(2):410–420. doi: 10.1016/0003-9861(70)90494-7. [DOI] [PubMed] [Google Scholar]
- Biron K. K., Elion G. B. In vitro susceptibility of varicella-zoster virus to acyclovir. Antimicrob Agents Chemother. 1980 Sep;18(3):443–447. doi: 10.1128/aac.18.3.443. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burdge D. R., Chow A. W., Sacks S. L. Neurotoxic effects during vidarabine therapy for herpes zoster. Can Med Assoc J. 1985 Feb 15;132(4):392–395. [PMC free article] [PubMed] [Google Scholar]
- Burnette T. C., Koszalka G. W., Krenitsky T. A., De Miranda P. Metabolic disposition and pharmacokinetics of the antiviral agent 6-methoxypurine arabinoside in rats and monkeys. Antimicrob Agents Chemother. 1991 Jun;35(6):1165–1173. doi: 10.1128/aac.35.6.1165. [DOI] [PMC free article] [PubMed] [Google Scholar]
- De Clercq E., Walker R. T. Synthesis and antiviral properties of 5-vinylpyrimidine nucleoside analogs. Pharmacol Ther. 1984;26(1):1–44. doi: 10.1016/0163-7258(84)90049-4. [DOI] [PubMed] [Google Scholar]
- Huang P., Siciliano M. J., Plunkett W. Gene deletion, a mechanism of induced mutation by arabinosyl nucleosides. Mutat Res. 1989 Feb;210(2):291–301. doi: 10.1016/0027-5107(89)90090-0. [DOI] [PubMed] [Google Scholar]
- Kitchin K. T. Laboratory methods for ten hepatic toxification/detoxification parameters. Methods Find Exp Clin Pharmacol. 1983 Sep;5(7):439–448. [PubMed] [Google Scholar]
- Koszalka G. W., Averett D. R., Fyfe J. A., Roberts G. B., Spector T., Biron K., Krenitsky T. A. 6-N-substituted derivatives of adenine arabinoside as selective inhibitors of varicella-zoster virus. Antimicrob Agents Chemother. 1991 Jul;35(7):1437–1443. doi: 10.1128/aac.35.7.1437. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Krenitsky T. A., Tuttle J. V., Koszalka G. W., Chen I. S., Beacham L. M., 3rd, Rideout J. L., Elion G. B. Deoxycytidine kinase from calf thymus. Substrate and inhibitor specificity. J Biol Chem. 1976 Jul 10;251(13):4055–4061. [PubMed] [Google Scholar]
- Mencoboni M., Lerza R., Bogliolo G., Flego G., Pannacciulli I. Toxicity of vidarabine on hemopoietic progenitor cells in mice. Chemotherapy. 1990;36(3):240–244. doi: 10.1159/000238772. [DOI] [PubMed] [Google Scholar]
- NASH T. The colorimetric estimation of formaldehyde by means of the Hantzsch reaction. Biochem J. 1953 Oct;55(3):416–421. doi: 10.1042/bj0550416. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nagasawa H. T., Shirota F. N., Alexander C. S. Identification and synthesis of the major nucleoside metabolite in rabbit urine after administration of puromycin aminonucleoside. J Med Chem. 1972 Feb;15(2):177–181. doi: 10.1021/jm00272a013. [DOI] [PubMed] [Google Scholar]
- Nagasawa H. T., Swingle K. F., Alexander C. S. Metabolism of aminonucleoside-8-14C in the rat and guinea pig. Biochem Pharmacol. 1967 Nov;16(11):2211–2219. doi: 10.1016/0006-2952(67)90020-2. [DOI] [PubMed] [Google Scholar]
- Schenkman J. B., Wilson B. J., Cinti D. L. Dimethylaminoethyl 2,2-diphenylvalerate HCl (SKF 525-A)--in vivo and in vitro effects of metabolism by rat liver microsomes--formation of an oxygenated complex. Biochem Pharmacol. 1972 Sep 1;21(17):2373–2383. doi: 10.1016/0006-2952(72)90389-9. [DOI] [PubMed] [Google Scholar]
- Shepp D. H., Dandliker P. S., Meyers J. D. Current therapy of varicella zoster virus infection in immunocompromised patients. A comparison of acyclovir and vidarabine. Am J Med. 1988 Aug 29;85(2A):96–98. [PubMed] [Google Scholar]
- Spector T. Mammalian adenylosuccinate lyase. Participation in the conversion of 2'-dIMP and beta-D-arabinosyl-IMP to adenine nucleotides. Biochim Biophys Acta. 1977 Apr 12;481(2):741–745. doi: 10.1016/0005-2744(77)90308-4. [DOI] [PubMed] [Google Scholar]
- Spector T., Miller R. L. Mammalian adenylosuccinate synthetase. Nucleotide monophosphate substrates and inhibitors. Biochim Biophys Acta. 1976 Sep 14;445(2):509–517. doi: 10.1016/0005-2744(76)90104-2. [DOI] [PubMed] [Google Scholar]
- Spector T. Progress curve analysis of adenosine deaminase-catalyzed reactions. Anal Biochem. 1984 Apr;138(1):242–245. doi: 10.1016/0003-2697(84)90796-6. [DOI] [PubMed] [Google Scholar]
- Spector T. Refinement of the coomassie blue method of protein quantitation. A simple and linear spectrophotometric assay for less than or equal to 0.5 to 50 microgram of protein. Anal Biochem. 1978 May;86(1):142–146. doi: 10.1016/0003-2697(78)90327-5. [DOI] [PubMed] [Google Scholar]
- Stoeckler J. D., Cambor C., Parks R. E., Jr Human erythrocytic purine nucleoside phosphorylase: reaction with sugar-modified nucleoside substrates. Biochemistry. 1980 Jan 8;19(1):102–107. doi: 10.1021/bi00542a016. [DOI] [PubMed] [Google Scholar]
- Upton R. A. Simple and reliable method for serial sampling of blood from rats. J Pharm Sci. 1975 Jan;64(1):112–114. doi: 10.1002/jps.2600640123. [DOI] [PubMed] [Google Scholar]
- Whitley R. J., Tucker B. C., Kinkel A. W., Barton N. H., Pass R. F., Whelchel J. D., Cobbs C. G., Diethelm A. G., Buchanan R. A. Pharmacology, tolerance, and antiviral activity of vidarabine monophosphate in humans. Antimicrob Agents Chemother. 1980 Nov;18(5):709–715. doi: 10.1128/aac.18.5.709. [DOI] [PMC free article] [PubMed] [Google Scholar]
