Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1992 Feb;36(2):378–386. doi: 10.1128/aac.36.2.378

Pharmacokinetics of temafloxacin in humans after multiple oral doses.

G R Granneman 1, P Carpentier 1, P J Morrison 1, A G Pernet 1
PMCID: PMC188445  PMID: 1318680

Abstract

The multiple-dose pharmacokinetics and tolerance of temafloxacin, a new fluoroquinolone antibacterial agent, were evaluated in healthy volunteers. Temafloxacin was found to be well tolerated when administered orally every 12 h for 7 days at doses of 100, 200, 300, 400, 600, and 800 mg. Steady-state maximum and minimum concentrations in plasma were proportional to dose, averaging slightly over 1.0 and 0.5 microgram/ml/100 mg administered. Analyses of variance found no significant differences among the dosage groups in total apparent clearances (CLT/F), renal clearances (CLR), or nonrenal clearances, which averaged 197, 119, and 78 ml/min, respectively. The half-life increased slightly with dose, averaging 8.4 h overall. The extent of absorption of temafloxacin was quite reproducible, with day-to-day intrasubject variability in minima averaging under 10%. Renal glomerular filtration of unbound drug was the dominant elimination process; however, tubular secretion and reabsorption also appear to occur. Secretion was estimated to account for about 12% of CLT/F during a regimen of 600 mg every 12 h. CLR was relatively constant for urine flow rates above 1 ml/min, but reabsorption appeared to occur under low-flow conditions, resulting in day-versus-night differences in CLR. Intersubject variability in CLT/F over the eightfold range in dosage was only 20%, and 60% of this variance was accounted for by differences in body surface area (or lean body mass), concentration in plasma, and urine flow rate. Overall, it appears that the pharmacokinetics of temafloxacin are essentially linear, reproducible within a subject, and predictable among subjects.

Full text

PDF
378

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aronoff G. E., Kenner C. H., Sloan R. S., Pottratz S. T. Multiple-dose ciprofloxacin kinetics in normal subjects. Clin Pharmacol Ther. 1984 Sep;36(3):384–388. doi: 10.1038/clpt.1984.192. [DOI] [PubMed] [Google Scholar]
  2. Chin N. X., Figueredo V. M., Novelli A., Neu H. C. In vitro activity of temafloxacin, a new difluoro quinolone antimicrobial agent. Eur J Clin Microbiol Infect Dis. 1988 Feb;7(1):58–63. doi: 10.1007/BF01962176. [DOI] [PubMed] [Google Scholar]
  3. Drusano G. L. An overview of the pharmacology of intravenously administered ciprofloxacin. Am J Med. 1987 Apr 27;82(4A):339–345. [PubMed] [Google Scholar]
  4. Frydman A. M., Le Roux Y., Lefebvre M. A., Djebbar F., Fourtillan J. B., Gaillot J. Pharmacokinetics of pefloxacin after repeated intravenous and oral administration (400 mg bid) in young healthy volunteers. J Antimicrob Chemother. 1986 Apr;17 (Suppl B):65–79. doi: 10.1093/jac/17.suppl_b.65. [DOI] [PubMed] [Google Scholar]
  5. Goo R. H., Moore J. G., Greenberg E., Alazraki N. P. Circadian variation in gastric emptying of meals in humans. Gastroenterology. 1987 Sep;93(3):515–518. doi: 10.1016/0016-5085(87)90913-9. [DOI] [PubMed] [Google Scholar]
  6. Granneman G. R., Carpentier P., Morrison P. J., Pernet A. G. Pharmacokinetics of temafloxacin in humans after single oral doses. Antimicrob Agents Chemother. 1991 Mar;35(3):436–441. doi: 10.1128/aac.35.3.436. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Granneman G. R., Varga L. L. High-performance liquid chromatographic procedures for the determination of temafloxacin in biological matrices. J Chromatogr. 1991 Jul 17;568(1):197–206. doi: 10.1016/0378-4347(91)80353-e. [DOI] [PubMed] [Google Scholar]
  8. Hardy D. J., Swanson R. N., Hensey D. M., Ramer N. R., Bower R. R., Hanson C. W., Chu D. T., Fernandes P. B. Comparative antibacterial activities of temafloxacin hydrochloride (A-62254) and two reference fluoroquinolones. Antimicrob Agents Chemother. 1987 Nov;31(11):1768–1774. doi: 10.1128/aac.31.11.1768. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Komiya I. Urine flow dependence of renal clearance and interrelation of renal reabsorption and physicochemical properties of drugs. Drug Metab Dispos. 1986 Mar-Apr;14(2):239–245. [PubMed] [Google Scholar]
  10. LeBel M., Vallée F., Bergeron M. G. Tissue penetration of ciprofloxacin after single and multiple doses. Antimicrob Agents Chemother. 1986 Mar;29(3):501–505. doi: 10.1128/aac.29.3.501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ledergerber B., Bettex J. D., Joos B., Flepp M., Lüthy R. Effect of standard breakfast on drug absorption and multiple-dose pharmacokinetics of ciprofloxacin. Antimicrob Agents Chemother. 1985 Mar;27(3):350–352. doi: 10.1128/aac.27.3.350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lesko L. J., Brousseau D., Canada A. T., Eastwood G. Temporal variations in trough serum theophylline concentrations at steady state. J Pharm Sci. 1980 Mar;69(3):358–359. doi: 10.1002/jps.2600690332. [DOI] [PubMed] [Google Scholar]
  13. Lode H., Höffken G., Olschewski P., Sievers B., Kirch A., Borner K., Koeppe P. Pharmacokinetics of ofloxacin after parenteral and oral administration. Antimicrob Agents Chemother. 1987 Sep;31(9):1338–1342. doi: 10.1128/aac.31.9.1338. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Sheiner L. B., Beal S. L. Evaluation of methods for estimating population pharmacokinetics parameters. I. Michaelis-Menten model: routine clinical pharmacokinetic data. J Pharmacokinet Biopharm. 1980 Dec;8(6):553–571. doi: 10.1007/BF01060053. [DOI] [PubMed] [Google Scholar]
  15. Shiba K., Saito A., Shimada J., Hori S., Kaji M., Miyahara T., Kusajima H., Kaneko S., Saito S., Ooie T. Renal handling of fleroxacin in rabbits, dogs, and humans. Antimicrob Agents Chemother. 1990 Jan;34(1):58–64. doi: 10.1128/aac.34.1.58. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Shimada J., Yamaji T., Ueda Y., Uchida H., Kusajima H., Irikura T. Mechanism of renal excretion of AM-715, a new quinolonecarboxylic acid derivative, in rabbits, dogs, and humans. Antimicrob Agents Chemother. 1983 Jan;23(1):1–7. doi: 10.1128/aac.23.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. St-Pierre M. V., Spino M., Isles A. F., Tesoro A., MacLeod S. M. Temporal variation in the disposition of theophylline and its metabolites. Clin Pharmacol Ther. 1985 Jul;38(1):89–95. doi: 10.1038/clpt.1985.140. [DOI] [PubMed] [Google Scholar]
  18. Swanson B. N., Boppana V. K., Vlasses P. H., Rotmensch H. H., Ferguson R. K. Norfloxacin disposition after sequentially increasing oral doses. Antimicrob Agents Chemother. 1983 Feb;23(2):284–288. doi: 10.1128/aac.23.2.284. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Tucker G. T. Measurement of the renal clearance of drugs. Br J Clin Pharmacol. 1981 Dec;12(6):761–770. doi: 10.1111/j.1365-2125.1981.tb01304.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Weidekamm E., Portmann R., Suter K., Partos C., Dell D., Lücker P. W. Single- and multiple-dose pharmacokinetics of fleroxacin, a trifluorinated quinolone, in humans. Antimicrob Agents Chemother. 1987 Dec;31(12):1909–1914. doi: 10.1128/aac.31.12.1909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Wingender W., Graefe K. H., Gau W., Förster D., Beermann D., Schacht P. Pharmacokinetics of ciprofloxacin after oral and intravenous administration in healthy volunteers. Eur J Clin Microbiol. 1984 Aug;3(4):355–359. doi: 10.1007/BF01977494. [DOI] [PubMed] [Google Scholar]
  22. Wolf R., Eberl R., Dunky A., Mertz N., Chang T., Goulet J. R., Latts J. The clinical pharmacokinetics and tolerance of enoxacin in healthy volunteers. J Antimicrob Chemother. 1984 Sep;14 (Suppl 100):63–69. doi: 10.1093/jac/14.suppl_c.63. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES