Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1995 Jan;69(1):189–197. doi: 10.1128/jvi.69.1.189-197.1995

Construction and properties of pseudorabies virus recombinants with altered control of immediate-early gene expression.

K L Glazenburg 1, B P Peeters 1, J M Pol 1, A L Gielkens 1, R J Moormann 1
PMCID: PMC188563  PMID: 7527083

Abstract

To investigate how altered control of expression of the essential immediate-early (IE) gene of pseudorabies virus influences virus replication and virulence, we replaced the IE promoter with the tissue-specific promoters of the bovine cytokeratin IV gene (CKIV), the bovine cytokeratin VIb gene (CKVIb), or the inducible promoter of Drosophila heat shock gene HSP70. We compared expression of the IE gene of the wild-type virus and recombinant viruses in different cell types and at different temperatures and found that IE expression had become cell type or temperature dependent. When a recombinant virus was titrated on nonpermissive cells or was titrated at nonpermissive temperatures in vitro, the plating efficiency was reduced by more than 99%. Mice were inoculated subcutaneously (s.c.), intraperitoneally (i.p.), or intranasally (i.n.) with a dose equal to 100 times the 50% lethal dose of the wild-type virus. After inoculation with temperature-sensitive recombinant N-HSP, two (s.c.), two (i.p.), and four (i.n.) of five mice died. However, at this dose, recombinant N-CKIV, which contains a promoter specific for stratified epithelial tissue of the tongue mucosa, was not lethal when inoculated s.c. or i.p. but killed four mice when inoculated i.n. Recombinant N-CKVIb, which contains a promoter specific for the suprabasal layers of the epidermis, was not lethal after inoculation by any of the three routes. In explant cultures of nasal mucosa of pigs, replication of N-CKIV and N-CKVIb was not markedly reduced in the epithelium. However, in contrast to results obtained with wild-type virus, infection of the stroma was not observed. We conclude that the replicative ability and virulence of pseudorabies virus can be influenced by altering control of expression of the IE gene.

Full Text

The Full Text of this article is available as a PDF (703.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abmayr S. M., Feldman L. D., Roeder R. G. In vitro stimulation of specific RNA polymerase II-mediated transcription by the pseudorabies virus immediate early protein. Cell. 1985 Dec;43(3 Pt 2):821–829. doi: 10.1016/0092-8674(85)90255-7. [DOI] [PubMed] [Google Scholar]
  2. Bahner I., Zhou C., Yu X. J., Hao Q. L., Guatelli J. C., Kohn D. B. Comparison of trans-dominant inhibitory mutant human immunodeficiency virus type 1 genes expressed by retroviral vectors in human T lymphocytes. J Virol. 1993 Jun;67(6):3199–3207. doi: 10.1128/jvi.67.6.3199-3207.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ben-Porat T., Jean J. H., Kaplan A. S. Early functions of the genome of herpesvirus. IV. Fate and translation of immediate-early viral RNA. Virology. 1974 Jun;59(2):524–531. doi: 10.1016/0042-6822(74)90462-0. [DOI] [PubMed] [Google Scholar]
  4. Ben-Porat T., Rakusanova T., Kaplan A. S. Early functions of the genome of herpesvirus. II. Inhibition of the formation of cell-specific polysomes. Virology. 1971 Dec;46(3):890–899. doi: 10.1016/0042-6822(71)90089-4. [DOI] [PubMed] [Google Scholar]
  5. Blessing M., Jorcano J. L., Franke W. W. Enhancer elements directing cell-type-specific expression of cytokeratin genes and changes of the epithelial cytoskeleton by transfections of hybrid cytokeratin genes. EMBO J. 1989 Jan;8(1):117–126. doi: 10.1002/j.1460-2075.1989.tb03355.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Blessing M., Zentgraf H., Jorcano J. L. Differentially expressed bovine cytokeratin genes. Analysis of gene linkage and evolutionary conservation of 5'-upstream sequences. EMBO J. 1987 Mar;6(3):567–575. doi: 10.1002/j.1460-2075.1987.tb04792.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bressan G. M., Stanley K. K. pUEX, a bacterial expression vector related to pEX with universal host specificity. Nucleic Acids Res. 1987 Dec 10;15(23):10056–10056. doi: 10.1093/nar/15.23.10056. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Campbell M. E., Preston C. M. DNA sequences which regulate the expression of the pseudorabies virus major immediate early gene. Virology. 1987 Apr;157(2):307–316. doi: 10.1016/0042-6822(87)90273-x. [DOI] [PubMed] [Google Scholar]
  9. Card J. P., Whealy M. E., Robbins A. K., Enquist L. W. Pseudorabies virus envelope glycoprotein gI influences both neurotropism and virulence during infection of the rat visual system. J Virol. 1992 May;66(5):3032–3041. doi: 10.1128/jvi.66.5.3032-3041.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Caruso M., Panis Y., Gagandeep S., Houssin D., Salzmann J. L., Klatzmann D. Regression of established macroscopic liver metastases after in situ transduction of a suicide gene. Proc Natl Acad Sci U S A. 1993 Aug 1;90(15):7024–7028. doi: 10.1073/pnas.90.15.7024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Cheung A. K. DNA nucleotide sequence analysis of the immediate-early gene of pseudorabies virus. Nucleic Acids Res. 1989 Jun 26;17(12):4637–4646. doi: 10.1093/nar/17.12.4637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Federoff H. J., Geschwind M. D., Geller A. I., Kessler J. A. Expression of nerve growth factor in vivo from a defective herpes simplex virus 1 vector prevents effects of axotomy on sympathetic ganglia. Proc Natl Acad Sci U S A. 1992 Mar 1;89(5):1636–1640. doi: 10.1073/pnas.89.5.1636. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Feldman L. T., Demarchi J. M., Ben-Porat T., Kaplan A. S. Control of abundance of immediate-early mRNA in herpesvirus (pseudorabies)-infected cells. Virology. 1982 Jan 15;116(1):250–263. doi: 10.1016/0042-6822(82)90417-2. [DOI] [PubMed] [Google Scholar]
  14. Feldman L., Rixon F. J., Jean J. H., Ben-Porat T., Kaplan A. S. Transcription of the genome of pseudorabies virus (A herpesvirus) is strictly controlled. Virology. 1979 Sep;97(2):316–327. doi: 10.1016/0042-6822(79)90343-x. [DOI] [PubMed] [Google Scholar]
  15. Gielkens A. L., Van Oirschot J. T., Berns A. J. Genome differences among field isolates and vaccine strains of pseudorabies virus. J Gen Virol. 1985 Jan;66(Pt 1):69–82. doi: 10.1099/0022-1317-66-1-69. [DOI] [PubMed] [Google Scholar]
  16. Glazenburg K. L., Elgersma-Hooisma M., Briaire J., Voermans J., Kimman T. G., Gielkens A. L., Moormann R. J. Vaccine properties of pseudorabies virus strain 783 are not affected by a deletion of 71 base pairs in the promoter/enhancer region of the viral immediate early gene. Vaccine. 1994 Sep;12(12):1097–1100. doi: 10.1016/0264-410x(94)90179-1. [DOI] [PubMed] [Google Scholar]
  17. Glazenburg K., Gielkens A., Moormann R. Effects of replacing the promoter of the immediate early gene with the promoter of Drosophila heat-shock gene HSP70 on the growth and virulence of pseudorabies virus. Vet Microbiol. 1992 Nov;33(1-4):35–43. doi: 10.1016/0378-1135(92)90033-p. [DOI] [PubMed] [Google Scholar]
  18. Gooding L. R. Virus proteins that counteract host immune defenses. Cell. 1992 Oct 2;71(1):5–7. doi: 10.1016/0092-8674(92)90259-f. [DOI] [PubMed] [Google Scholar]
  19. Hightower L. E. Heat shock, stress proteins, chaperones, and proteotoxicity. Cell. 1991 Jul 26;66(2):191–197. doi: 10.1016/0092-8674(91)90611-2. [DOI] [PubMed] [Google Scholar]
  20. Ihara S., Ben-Porat T. The expression of viral functions is necessary for recombination of a herpesvirus (pseudorabies). Virology. 1985 Nov;147(1):237–240. doi: 10.1016/0042-6822(85)90247-8. [DOI] [PubMed] [Google Scholar]
  21. Ihara S., Feldman L., Watanabe S., Ben-Porat T. Characterization of the immediate-early functions of pseudorabies virus. Virology. 1983 Dec;131(2):437–454. doi: 10.1016/0042-6822(83)90510-x. [DOI] [PubMed] [Google Scholar]
  22. Jean J. H., Ben-Porat T., Kaplan A. S. Early functions of the genome of herpesvirus. 3. Inhibition of the transcription of the viral genome in cells treated with cycloheximide early during the infective process. Virology. 1974 Jun;59(2):516–523. doi: 10.1016/0042-6822(74)90461-9. [DOI] [PubMed] [Google Scholar]
  23. Kasza L., Shadduck J. A., Christofinis G. J. Establishment, viral susceptibility and biological characteristics of a swine kidney cell line SK-6. Res Vet Sci. 1972 Jan;13(1):46–51. [PubMed] [Google Scholar]
  24. Kit S., Kit M., Pirtle E. C. Attenuated properties of thymidine kinase-negative deletion mutant of pseudorabies virus. Am J Vet Res. 1985 Jun;46(6):1359–1367. [PubMed] [Google Scholar]
  25. Marrack P., Kappler J. Subversion of the immune system by pathogens. Cell. 1994 Jan 28;76(2):323–332. doi: 10.1016/0092-8674(94)90339-5. [DOI] [PubMed] [Google Scholar]
  26. Moll R., Franke W. W., Schiller D. L., Geiger B., Krepler R. The catalog of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells. Cell. 1982 Nov;31(1):11–24. doi: 10.1016/0092-8674(82)90400-7. [DOI] [PubMed] [Google Scholar]
  27. Peeters B., Pol J., Gielkens A., Moormann R. Envelope glycoprotein gp50 of pseudorabies virus is essential for virus entry but is not required for viral spread in mice. J Virol. 1993 Jan;67(1):170–177. doi: 10.1128/jvi.67.1.170-177.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Peeters B., de Wind N., Hooisma M., Wagenaar F., Gielkens A., Moormann R. Pseudorabies virus envelope glycoproteins gp50 and gII are essential for virus penetration, but only gII is involved in membrane fusion. J Virol. 1992 Feb;66(2):894–905. doi: 10.1128/jvi.66.2.894-905.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Phillips B., Abravaya K., Morimoto R. I. Analysis of the specificity and mechanism of transcriptional activation of the human hsp70 gene during infection by DNA viruses. J Virol. 1991 Nov;65(11):5680–5692. doi: 10.1128/jvi.65.11.5680-5692.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Pol J. M., Gielkens A. L., van Oirschot J. T. Comparative pathogenesis of three strains of pseudorabies virus in pigs. Microb Pathog. 1989 Nov;7(5):361–371. doi: 10.1016/0882-4010(89)90039-9. [DOI] [PubMed] [Google Scholar]
  31. Pol J. M., Quint W. G., Kok G. L., Broekhuysen-Davies J. M. Pseudorabies virus infections in explants of porcine nasal mucosa. Res Vet Sci. 1991 Jan;50(1):45–53. doi: 10.1016/0034-5288(91)90052-p. [DOI] [PubMed] [Google Scholar]
  32. Rinaman L., Card J. P., Enquist L. W. Spatiotemporal responses of astrocytes, ramified microglia, and brain macrophages to central neuronal infection with pseudorabies virus. J Neurosci. 1993 Feb;13(2):685–702. doi: 10.1523/JNEUROSCI.13-02-00685.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Schmid E., Schiller D. L., Grund C., Stadler J., Franke W. W. Tissue type-specific expression of intermediate filament proteins in a cultured epithelial cell line from bovine mammary gland. J Cell Biol. 1983 Jan;96(1):37–50. doi: 10.1083/jcb.96.1.37. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Steinert P. M., Steven A. C., Roop D. R. The molecular biology of intermediate filaments. Cell. 1985 Sep;42(2):411–420. doi: 10.1016/0092-8674(85)90098-4. [DOI] [PubMed] [Google Scholar]
  35. Török I., Karch F. Nucleotide sequences of heat shock activated genes in Drosophila melanogaster. I. Sequences in the regions of the 5' and 3' ends of the hsp 70 gene in the hybrid plasmid 56H8. Nucleic Acids Res. 1980 Jul 25;8(14):3105–3123. doi: 10.1093/nar/8.14.3105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Vlcek C., Kozmík Z., Paces V., Schirm S., Schwyzer M. Pseudorabies virus immediate-early gene overlaps with an oppositely oriented open reading frame: characterization of their promoter and enhancer regions. Virology. 1990 Nov;179(1):365–377. doi: 10.1016/0042-6822(90)90304-a. [DOI] [PubMed] [Google Scholar]
  37. Wittmann G. Spread and control of Aujeszky's disease (AD). Comp Immunol Microbiol Infect Dis. 1991;14(2):165–173. doi: 10.1016/0147-9571(91)90129-2. [DOI] [PubMed] [Google Scholar]
  38. Wong K. K., Jr, Chatterjee S. Controlling herpes simplex virus infections: is intracellular immunization the way of the future? Curr Top Microbiol Immunol. 1992;179:159–174. doi: 10.1007/978-3-642-77247-4_10. [DOI] [PubMed] [Google Scholar]
  39. Wu C. L., Wilcox K. W. The conserved DNA-binding domains encoded by the herpes simplex virus type 1 ICP4, pseudorabies virus IE180, and varicella-zoster virus ORF62 genes recognize similar sites in the corresponding promoters. J Virol. 1991 Mar;65(3):1149–1159. doi: 10.1128/jvi.65.3.1149-1159.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. van Zijl M., Wensvoort G., de Kluyver E., Hulst M., van der Gulden H., Gielkens A., Berns A., Moormann R. Live attenuated pseudorabies virus expressing envelope glycoprotein E1 of hog cholera virus protects swine against both pseudorabies and hog cholera. J Virol. 1991 May;65(5):2761–2765. doi: 10.1128/jvi.65.5.2761-2765.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES