Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1995 Jan;69(1):320–325. doi: 10.1128/jvi.69.1.320-325.1995

Synthetic multimeric peptides derived from the principal neutralization domain (V3 loop) of human immunodeficiency virus type 1 (HIV-1) gp120 bind to galactosylceramide and block HIV-1 infection in a human CD4-negative mucosal epithelial cell line.

N Yahi 1, J M Sabatier 1, S Baghdiguian 1, F Gonzalez-Scarano 1, J Fantini 1
PMCID: PMC188578  PMID: 7983725

Abstract

The glycosphingolipid galactosylceramide (GalCer), which binds gp120 with high affinity and specificity, is a potential alternative receptor for human immunodeficiency virus type 1 (HIV-1) in some CD4-negative neural and epithelial human cells, including the human colonic epithelial cell line HT-29. In the present study, we demonstrate that synthetic multibranched peptides derived from the consensus sequence of the HIV-1 V3 loop block HIV-1 infection in HT-29 cells. The most active peptide was an eight-branched multimer of the motif Gly-Pro-Gly-Arg-Ala-Phe which at a concentration of 1.8 microM induced a 50% inhibition of HIV-1 infection in competition experiments. This peptide was not toxic to HT-29 cells, and preincubation with HIV-1 did not affect viral infectivity, indicating that the antiviral activity was not due to a nonspecific virucidal effect. Using a high-performance thin-layer chromatography binding assay, we found that multibranched V3 peptides recognized GalCer and inhibited binding of recombinant gp120 to the glycosphingolipid. In addition, these peptides abolished the binding of an anti-GalCer monoclonal antibody to GalCer on the surface of live HT-29 cells. These data provide additional evidence that the V3 loop is involved in the binding of gp120 to the GalCer receptor and show that multibranched V3 peptides are potent inhibitors of the GalCer-dependent pathway of HIV-1 infection in CD4-negative mucosal epithelial cells.

Full Text

The Full Text of this article is available as a PDF (686.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bhat S., Mettus R. V., Reddy E. P., Ugen K. E., Srikanthan V., Williams W. V., Weiner D. B. The galactosyl ceramide/sulfatide receptor binding region of HIV-1 gp120 maps to amino acids 206-275. AIDS Res Hum Retroviruses. 1993 Feb;9(2):175–181. doi: 10.1089/aid.1993.9.175. [DOI] [PubMed] [Google Scholar]
  2. Bhat S., Spitalnik S. L., Gonzalez-Scarano F., Silberberg D. H. Galactosyl ceramide or a derivative is an essential component of the neural receptor for human immunodeficiency virus type 1 envelope glycoprotein gp120. Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7131–7134. doi: 10.1073/pnas.88.16.7131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bolognesi D. P. Human immunodeficiency virus vaccines. Adv Virus Res. 1993;42:103–148. doi: 10.1016/s0065-3527(08)60084-6. [DOI] [PubMed] [Google Scholar]
  4. Chesebro B., Wehrly K., Nishio J., Perryman S. Macrophage-tropic human immunodeficiency virus isolates from different patients exhibit unusual V3 envelope sequence homogeneity in comparison with T-cell-tropic isolates: definition of critical amino acids involved in cell tropism. J Virol. 1992 Nov;66(11):6547–6554. doi: 10.1128/jvi.66.11.6547-6554.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cook D. G., Fantini J., Spitalnik S. L., Gonzalez-Scarano F. Binding of human immunodeficiency virus type I (HIV-1) gp120 to galactosylceramide (GalCer): relationship to the V3 loop. Virology. 1994 Jun;201(2):206–214. doi: 10.1006/viro.1994.1287. [DOI] [PubMed] [Google Scholar]
  6. De Jong J. J., De Ronde A., Keulen W., Tersmette M., Goudsmit J. Minimal requirements for the human immunodeficiency virus type 1 V3 domain to support the syncytium-inducing phenotype: analysis by single amino acid substitution. J Virol. 1992 Nov;66(11):6777–6780. doi: 10.1128/jvi.66.11.6777-6780.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ebenbichler C., Westervelt P., Carrillo A., Henkel T., Johnson D., Ratner L. Structure-function relationships of the HIV-1 envelope V3 loop tropism determinant: evidence for two distinct conformations. AIDS. 1993 May;7(5):639–646. [PubMed] [Google Scholar]
  8. Fantini J., Cook D. G., Nathanson N., Spitalnik S. L., Gonzalez-Scarano F. Infection of colonic epithelial cell lines by type 1 human immunodeficiency virus is associated with cell surface expression of galactosylceramide, a potential alternative gp120 receptor. Proc Natl Acad Sci U S A. 1993 Apr 1;90(7):2700–2704. doi: 10.1073/pnas.90.7.2700. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Faure E., Yahi N., Zider A., Cavard C., Champion S., Fantini J. Physical contact with lymphocytes is required for reactivation of dormant HIV-1 in colonic epithelial cells: involvement of the HIV-1 LTR. Virus Res. 1994 Oct;34(1):1–13. doi: 10.1016/0168-1702(94)90115-5. [DOI] [PubMed] [Google Scholar]
  10. Ghiara J. B., Stura E. A., Stanfield R. L., Profy A. T., Wilson I. A. Crystal structure of the principal neutralization site of HIV-1. Science. 1994 Apr 1;264(5155):82–85. doi: 10.1126/science.7511253. [DOI] [PubMed] [Google Scholar]
  11. Goudsmit J., Debouck C., Meloen R. H., Smit L., Bakker M., Asher D. M., Wolff A. V., Gibbs C. J., Jr, Gajdusek D. C. Human immunodeficiency virus type 1 neutralization epitope with conserved architecture elicits early type-specific antibodies in experimentally infected chimpanzees. Proc Natl Acad Sci U S A. 1988 Jun;85(12):4478–4482. doi: 10.1073/pnas.85.12.4478. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Harouse J. M., Bhat S., Spitalnik S. L., Laughlin M., Stefano K., Silberberg D. H., Gonzalez-Scarano F. Inhibition of entry of HIV-1 in neural cell lines by antibodies against galactosyl ceramide. Science. 1991 Jul 19;253(5017):320–323. doi: 10.1126/science.1857969. [DOI] [PubMed] [Google Scholar]
  13. Harouse J. M., Kunsch C., Hartle H. T., Laughlin M. A., Hoxie J. A., Wigdahl B., Gonzalez-Scarano F. CD4-independent infection of human neural cells by human immunodeficiency virus type 1. J Virol. 1989 Jun;63(6):2527–2533. doi: 10.1128/jvi.63.6.2527-2533.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kido H., Fukutomi A., Katunuma N. Tryptase TL2 in the membrane of human T4+ lymphocytes is a novel binding protein of the V3 domain of HIV-1 envelope glycoprotein gp 120. FEBS Lett. 1991 Jul 29;286(1-2):233–236. doi: 10.1016/0014-5793(91)80981-8. [DOI] [PubMed] [Google Scholar]
  15. LaRosa G. J., Davide J. P., Weinhold K., Waterbury J. A., Profy A. T., Lewis J. A., Langlois A. J., Dreesman G. R., Boswell R. N., Shadduck P. Conserved sequence and structural elements in the HIV-1 principal neutralizing determinant. Science. 1990 Aug 24;249(4971):932–935. doi: 10.1126/science.2392685. [DOI] [PubMed] [Google Scholar]
  16. McAlarney T., Apostolski S., Lederman S., Latov N. Characteristics of HIV-1 gp120 glycoprotein binding to glycolipids. J Neurosci Res. 1994 Mar 1;37(4):453–460. doi: 10.1002/jnr.490370404. [DOI] [PubMed] [Google Scholar]
  17. Merrifield B. Solid phase synthesis. Science. 1986 Apr 18;232(4748):341–347. doi: 10.1126/science.3961484. [DOI] [PubMed] [Google Scholar]
  18. Moore J. P., Nara P. L. The role of the V3 loop of gp120 in HIV infection. AIDS. 1991;5 (Suppl 2):S21–S33. doi: 10.1097/00002030-199101001-00004. [DOI] [PubMed] [Google Scholar]
  19. Murakami T., Hattori T., Takatsuki K. A principal neutralizing domain of human immunodeficiency virus type 1 interacts with proteinase-like molecule(s) at the surface of Molt-4 clone 8 cells. Biochim Biophys Acta. 1991 Sep 20;1079(3):279–284. doi: 10.1016/0167-4838(91)90070-g. [DOI] [PubMed] [Google Scholar]
  20. Nehete P. N., Arlinghaus R. B., Sastry K. J. Inhibition of human immunodeficiency virus type 1 infection and syncytium formation in human cells by V3 loop synthetic peptides from gp120. J Virol. 1993 Nov;67(11):6841–6846. doi: 10.1128/jvi.67.11.6841-6846.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Palker T. J., Clark M. E., Langlois A. J., Matthews T. J., Weinhold K. J., Randall R. R., Bolognesi D. P., Haynes B. F. Type-specific neutralization of the human immunodeficiency virus with antibodies to env-encoded synthetic peptides. Proc Natl Acad Sci U S A. 1988 Mar;85(6):1932–1936. doi: 10.1073/pnas.85.6.1932. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Ranscht B., Clapshaw P. A., Price J., Noble M., Seifert W. Development of oligodendrocytes and Schwann cells studied with a monoclonal antibody against galactocerebroside. Proc Natl Acad Sci U S A. 1982 Apr;79(8):2709–2713. doi: 10.1073/pnas.79.8.2709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Sabatier J. M., Zerrouk H., Darbon H., Mabrouk K., Benslimane A., Rochat H., Martin-Eauclaire M. F., Van Rietschoten J. P05, a new leiurotoxin I-like scorpion toxin: synthesis and structure-activity relationships of the alpha-amidated analog, a ligand of Ca(2+)-activated K+ channels with increased affinity. Biochemistry. 1993 Mar 23;32(11):2763–2770. doi: 10.1021/bi00062a005. [DOI] [PubMed] [Google Scholar]
  24. Schwartz O., Henin Y., Marechal V., Montagnier L. A rapid and simple colorimetric test for the study of anti-HIV agents. AIDS Res Hum Retroviruses. 1988 Dec;4(6):441–448. doi: 10.1089/aid.1988.4.441. [DOI] [PubMed] [Google Scholar]
  25. Tam J. P. Synthetic peptide vaccine design: synthesis and properties of a high-density multiple antigenic peptide system. Proc Natl Acad Sci U S A. 1988 Aug;85(15):5409–5413. doi: 10.1073/pnas.85.15.5409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Tateno M., Gonzalez-Scarano F., Levy J. A. Human immunodeficiency virus can infect CD4-negative human fibroblastoid cells. Proc Natl Acad Sci U S A. 1989 Jun;86(11):4287–4290. doi: 10.1073/pnas.86.11.4287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Yahi N., Baghdiguian S., Bolmont C., Fantini J. Replication and apical budding of HIV-1 in mucous-secreting colonic epithelial cells. J Acquir Immune Defic Syndr. 1992 Oct;5(10):993–1000. [PubMed] [Google Scholar]
  28. Yahi N., Baghdiguian S., Moreau H., Fantini J. Galactosyl ceramide (or a closely related molecule) is the receptor for human immunodeficiency virus type 1 on human colon epithelial HT29 cells. J Virol. 1992 Aug;66(8):4848–4854. doi: 10.1128/jvi.66.8.4848-4854.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Yahi N., Fantini J., Mabrouk K., Tamalet C., de Micco P., van Rietschoten J., Rochat H., Sabatier J. M. Multibranched V3 peptides inhibit human immunodeficiency virus infection in human lymphocytes and macrophages. J Virol. 1994 Sep;68(9):5714–5720. doi: 10.1128/jvi.68.9.5714-5720.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Yahi N., Sabatier J. M., Nickel P., Mabrouk K., Gonzalez-Scarano F., Fantini J. Suramin inhibits binding of the V3 region of HIV-1 envelope glycoprotein gp120 to galactosylceramide, the receptor for HIV-1 gp120 on human colon epithelial cells. J Biol Chem. 1994 Sep 30;269(39):24349–24353. [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES