Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1995 Jan;69(1):430–438. doi: 10.1128/jvi.69.1.430-438.1995

Viral RNA modulates the acid sensitivity of foot-and-mouth disease virus capsids.

S Curry 1, C C Abrams 1, E Fry 1, J C Crowther 1, G J Belsham 1, D I Stuart 1, A M King 1
PMCID: PMC188591  PMID: 7983739

Abstract

Foot-and-mouth disease virus (FMDV) manifests an extreme sensitivity to acid, which is thought to be important for entry of the RNA genome into the cell. We have compared the low-pH-induced disassembly in vitro of virions and natural empty capsids of three subtypes of serotype A FMDV by enzyme-linked immunosorbent assay and sucrose gradient sedimentation analysis. For all three subtypes (A22 Iraq 24/64, A10(61), and A24 Cruzeiro), the empty capsid was more stable by 0.5 pH unit on average than the corresponding virion. Unexpectedly, in the natural empty capsids used in this study, the precursor capsid protein VP0 was found largely to be cleaved into VP2 and VP4. For picornaviruses the processing of VP0 is closely associated with encapsidation of viral RNA, which is considered likely to play a catalytic role in the cleavage. Investigation of the cleavage of VP0 in natural empty capsids failed to implicate the viral RNA. However, it remains possible that these particles arise from abortive attempts to encapsidate RNA. Empty capsids expressed from a vaccinia virus recombinant showed essentially the same acid lability as natural empty capsids, despite differing considerably in the extent of VP0 processing, with the synthetic particles containing almost exclusively uncleaved VP0. These results indicate that it is the viral RNA that modulates acid lability in FMDV. In all cases the capsids dissociate at low pH directly into pentameric subunits. Comparison of the three viruses indicates that FMDV A22 Iraq is about 0.5 pH unit more sensitive to low pH than types A10(61) and A24 Cruzeiro. Sequence analysis of the three subtypes identified several differences at the interface between pentamers and highlighted a His-alpha-helix dipole interaction which spans the pentamer interface and appears likely to influence the acid lability of the virus.

Full Text

The Full Text of this article is available as a PDF (288.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Acharya R., Fry E., Stuart D., Fox G., Rowlands D., Brown F. The three-dimensional structure of foot-and-mouth disease virus at 2.9 A resolution. Nature. 1989 Feb 23;337(6209):709–716. doi: 10.1038/337709a0. [DOI] [PubMed] [Google Scholar]
  2. Arnold E., Luo M., Vriend G., Rossmann M. G., Palmenberg A. C., Parks G. D., Nicklin M. J., Wimmer E. Implications of the picornavirus capsid structure for polyprotein processing. Proc Natl Acad Sci U S A. 1987 Jan;84(1):21–25. doi: 10.1073/pnas.84.1.21. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. BROWN F., CARTWRIGHT B. Dissociation of foot-and-mouth disease virus into its nucleic acid and protein components. Nature. 1961 Dec 23;192:1163–1164. doi: 10.1038/1921163a0. [DOI] [PubMed] [Google Scholar]
  4. BROWN F., CARTWRIGHT B. PURIFICATION OF RADIOACTIVE FOOT-AND-MOUTH DISEASE VIRUS. Nature. 1963 Sep 21;199:1168–1170. doi: 10.1038/1991168a0. [DOI] [PubMed] [Google Scholar]
  5. Baxt B., Bachrach H. L. Early interactions of foot-and-mouth disease virus with cultured cells. Virology. 1980 Jul 15;104(1):42–55. doi: 10.1016/0042-6822(80)90364-5. [DOI] [PubMed] [Google Scholar]
  6. Baxt B. Effect of lysosomotropic compounds on early events in foot-and-mouth disease virus replication. Virus Res. 1987 May;7(3):257–271. doi: 10.1016/0168-1702(87)90032-3. [DOI] [PubMed] [Google Scholar]
  7. Bishop N. E., Anderson D. A. RNA-dependent cleavage of VP0 capsid protein in provirions of hepatitis A virus. Virology. 1993 Dec;197(2):616–623. doi: 10.1006/viro.1993.1636. [DOI] [PubMed] [Google Scholar]
  8. Black D. N., Brown F. Effect of actinomycin D and guanidine on the formation of a ribonucleic acid polymerase induced by foot-and mouth-disease virus and on the replication of virus and viral ribonucleic acid. Biochem J. 1969 Apr;112(3):317–323. doi: 10.1042/bj1120317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Bolwell C., Brown A. L., Barnett P. V., Campbell R. O., Clarke B. E., Parry N. R., Ouldridge E. J., Brown F., Rowlands D. J. Host cell selection of antigenic variants of foot-and-mouth disease virus. J Gen Virol. 1989 Jan;70(Pt 1):45–57. doi: 10.1099/0022-1317-70-1-45. [DOI] [PubMed] [Google Scholar]
  10. Caliguiri L. A., Tamm I. Action of guanidine on the replication of poliovirus RNA. Virology. 1968 Jul;35(3):408–417. doi: 10.1016/0042-6822(68)90219-5. [DOI] [PubMed] [Google Scholar]
  11. Carrillo E. C., Giachetti C., Campos R. H. Effect of lysosomotropic agents on the foot-and-mouth disease virus replication. Virology. 1984 Jun;135(2):542–545. doi: 10.1016/0042-6822(84)90208-3. [DOI] [PubMed] [Google Scholar]
  12. Carrillo E. C., Giachetti C., Campos R. Early steps in FMDV replication: further analysis on the effects of chloroquine. Virology. 1985 Nov;147(1):118–125. doi: 10.1016/0042-6822(85)90232-6. [DOI] [PubMed] [Google Scholar]
  13. Carroll A. R., Rowlands D. J., Clarke B. E. The complete nucleotide sequence of the RNA coding for the primary translation product of foot and mouth disease virus. Nucleic Acids Res. 1984 Mar 12;12(5):2461–2472. doi: 10.1093/nar/12.5.2461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Cartwright B., Chapman W. G., Brown F. Serological and immunological relations between the 146S and 12S particles of foot-and-mouth disease virus. J Gen Virol. 1980 Oct;50(2):369–375. doi: 10.1099/0022-1317-50-2-369. [DOI] [PubMed] [Google Scholar]
  15. Compton S. R., Nelsen B., Kirkegaard K. Temperature-sensitive poliovirus mutant fails to cleave VP0 and accumulates provirions. J Virol. 1990 Sep;64(9):4067–4075. doi: 10.1128/jvi.64.9.4067-4075.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Crowther J. R., Rowe C. A., Butcher R. Characterization of monoclonal antibodies against a type SAT 2 foot-and-mouth disease virus. Epidemiol Infect. 1993 Oct;111(2):391–406. doi: 10.1017/s0950268800057083. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Curry S., Abu-Ghazaleh R., Blakemore W., Fry E., Jackson T., King A., Lea S., Logan D., Newman J., Stuart D. Crystallization and preliminary X-ray analysis of three serotypes of foot-and-mouth disease virus. J Mol Biol. 1992 Dec 20;228(4):1263–1268. doi: 10.1016/0022-2836(92)90332-e. [DOI] [PubMed] [Google Scholar]
  18. Doel T. R., Baccarini P. J. Thermal stability of foot-and-mouth disease virus. Arch Virol. 1981;70(1):21–32. doi: 10.1007/BF01320790. [DOI] [PubMed] [Google Scholar]
  19. Doel T. R., Chong W. K. Comparative immunogenicity of 146S, 75S and 12S particles of foot-and-mouth disease virus. Arch Virol. 1982;73(2):185–191. doi: 10.1007/BF01314726. [DOI] [PubMed] [Google Scholar]
  20. Dunnebacke T. H., Levinthal J. D., Williams R. C. Entry and release of poliovirus as observed by electron microscopy of cultured cells. J Virol. 1969 Oct;4(4):505–513. doi: 10.1128/jvi.4.4.505-513.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Evans S. V. SETOR: hardware-lighted three-dimensional solid model representations of macromolecules. J Mol Graph. 1993 Jun;11(2):134-8, 127-8. doi: 10.1016/0263-7855(93)87009-t. [DOI] [PubMed] [Google Scholar]
  22. FENWICK M. L., COOPER P. D. Early interactions between poliovirus and ERK cells: some observations on the nature and significance of the rejected particles. Virology. 1962 Oct;18:212–223. doi: 10.1016/0042-6822(62)90007-7. [DOI] [PubMed] [Google Scholar]
  23. Fricks C. E., Hogle J. M. Cell-induced conformational change in poliovirus: externalization of the amino terminus of VP1 is responsible for liposome binding. J Virol. 1990 May;64(5):1934–1945. doi: 10.1128/jvi.64.5.1934-1945.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Fuerst T. R., Niles E. G., Studier F. W., Moss B. Eukaryotic transient-expression system based on recombinant vaccinia virus that synthesizes bacteriophage T7 RNA polymerase. Proc Natl Acad Sci U S A. 1986 Nov;83(21):8122–8126. doi: 10.1073/pnas.83.21.8122. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Giranda V. L., Heinz B. A., Oliveira M. A., Minor I., Kim K. H., Kolatkar P. R., Rossmann M. G., Rueckert R. R. Acid-induced structural changes in human rhinovirus 14: possible role in uncoating. Proc Natl Acad Sci U S A. 1992 Nov 1;89(21):10213–10217. doi: 10.1073/pnas.89.21.10213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Graves J. H., Cowan K. M., Trautman R. Immunochemical studies of foot-and-mouth disease. II. Characterization of RNA-free viruslike particles. Virology. 1968 Feb;34(2):269–274. doi: 10.1016/0042-6822(68)90236-5. [DOI] [PubMed] [Google Scholar]
  27. Gromeier M., Wetz K. Kinetics of poliovirus uncoating in HeLa cells in a nonacidic environment. J Virol. 1990 Aug;64(8):3590–3597. doi: 10.1128/jvi.64.8.3590-3597.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. HUMMELER K., HAMPARIAN V. V. Studies on the complement fixing antigens of poliomyelitis. I. Demonstration of type and group specific antigens in native and heated viral preparations. J Immunol. 1958 Dec;81(6):499–505. [PubMed] [Google Scholar]
  29. Harber J. J., Bradley J., Anderson C. W., Wimmer E. Catalysis of poliovirus VP0 maturation cleavage is not mediated by serine 10 of VP2. J Virol. 1991 Jan;65(1):326–334. doi: 10.1128/jvi.65.1.326-334.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Hogle J. M., Chow M., Filman D. J. Three-dimensional structure of poliovirus at 2.9 A resolution. Science. 1985 Sep 27;229(4720):1358–1365. doi: 10.1126/science.2994218. [DOI] [PubMed] [Google Scholar]
  31. JOKLIK W. K., DARNELL J. E., Jr The adsorption and early fate of purified poliovirus in HeLa cells. Virology. 1961 Apr;13:439–447. doi: 10.1016/0042-6822(61)90275-6. [DOI] [PubMed] [Google Scholar]
  32. Kim S., Boege U., Krishnaswamy S., Minor I., Smith T. J., Luo M., Scraba D. G., Rossmann M. G. Conformational variability of a picornavirus capsid: pH-dependent structural changes of Mengo virus related to its host receptor attachment site and disassembly. Virology. 1990 Mar;175(1):176–190. doi: 10.1016/0042-6822(90)90198-z. [DOI] [PubMed] [Google Scholar]
  33. Korant B. D., Lonberg-Holm K., Noble J., Stasny J. T. Naturally occurring and artificially produced components of three rhinoviruses. Virology. 1972 Apr;48(1):71–86. doi: 10.1016/0042-6822(72)90115-8. [DOI] [PubMed] [Google Scholar]
  34. Lee W. M., Monroe S. S., Rueckert R. R. Role of maturation cleavage in infectivity of picornaviruses: activation of an infectosome. J Virol. 1993 Apr;67(4):2110–2122. doi: 10.1128/jvi.67.4.2110-2122.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Luo M., Vriend G., Kamer G., Minor I., Arnold E., Rossmann M. G., Boege U., Scraba D. G., Duke G. M., Palmenberg A. C. The atomic structure of Mengo virus at 3.0 A resolution. Science. 1987 Jan 9;235(4785):182–191. doi: 10.1126/science.3026048. [DOI] [PubMed] [Google Scholar]
  36. Madshus I. H., Olsnes S., Sandvig K. Requirements for entry of poliovirus RNA into cells at low pH. EMBO J. 1984 Sep;3(9):1945–1950. doi: 10.1002/j.1460-2075.1984.tb02074.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Mak T. W., O'Callaghan D. J., Colter J. S. Studies of the pH inactivation of three variants of Mengo encephalomyelitis virus. Virology. 1970 Mar;40(3):565–571. doi: 10.1016/0042-6822(70)90200-x. [DOI] [PubMed] [Google Scholar]
  38. Marsh M., Helenius A. Virus entry into animal cells. Adv Virus Res. 1989;36:107–151. doi: 10.1016/S0065-3527(08)60583-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Mason P. W., Baxt B., Brown F., Harber J., Murdin A., Wimmer E. Antibody-complexed foot-and-mouth disease virus, but not poliovirus, can infect normally insusceptible cells via the Fc receptor. Virology. 1993 Feb;192(2):568–577. doi: 10.1006/viro.1993.1073. [DOI] [PubMed] [Google Scholar]
  40. Mellman I., Fuchs R., Helenius A. Acidification of the endocytic and exocytic pathways. Annu Rev Biochem. 1986;55:663–700. doi: 10.1146/annurev.bi.55.070186.003311. [DOI] [PubMed] [Google Scholar]
  41. Moscufo N., Yafal A. G., Rogove A., Hogle J., Chow M. A mutation in VP4 defines a new step in the late stages of cell entry by poliovirus. J Virol. 1993 Aug;67(8):5075–5078. doi: 10.1128/jvi.67.8.5075-5078.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Neubauer C., Frasel L., Kuechler E., Blaas D. Mechanism of entry of human rhinovirus 2 into HeLa cells. Virology. 1987 May;158(1):255–258. doi: 10.1016/0042-6822(87)90264-9. [DOI] [PubMed] [Google Scholar]
  43. Olson N. H., Kolatkar P. R., Oliveira M. A., Cheng R. H., Greve J. M., McClelland A., Baker T. S., Rossmann M. G. Structure of a human rhinovirus complexed with its receptor molecule. Proc Natl Acad Sci U S A. 1993 Jan 15;90(2):507–511. doi: 10.1073/pnas.90.2.507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. PRINGLE C. R. INHIBITION OF MULTIPLICATION OF FOOT-AND-MOUTH DISEASE VIRUS BY GUANIDINE HYDROCHLORIDE. Nature. 1964 Dec 5;204:1012–1013. doi: 10.1038/2041012a0. [DOI] [PubMed] [Google Scholar]
  45. Prchla E., Kuechler E., Blaas D., Fuchs R. Uncoating of human rhinovirus serotype 2 from late endosomes. J Virol. 1994 Jun;68(6):3713–3723. doi: 10.1128/jvi.68.6.3713-3723.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Pérez L., Carrasco L. Entry of poliovirus into cells does not require a low-pH step. J Virol. 1993 Aug;67(8):4543–4548. doi: 10.1128/jvi.67.8.4543-4548.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. RANDRUP A. Ultracentrifugation of the virus of foot-and-mouth disease. IV. Splitting of the greater complement-fixing particle. Acta Pathol Microbiol Scand. 1954;34(4):366–374. doi: 10.1111/j.1699-0463.1954.tb00834.x. [DOI] [PubMed] [Google Scholar]
  48. Roeder P. L., Le Blanc Smith P. M. Detection and typing of foot-and-mouth disease virus by enzyme-linked immunosorbent assay: a sensitive, rapid and reliable technique for primary diagnosis. Res Vet Sci. 1987 Sep;43(2):225–232. [PubMed] [Google Scholar]
  49. Rombaut B., Andries K., Boeyé A. A comparison of WIN 51711 and R 78206 as stabilizers of poliovirus virions and procapsids. J Gen Virol. 1991 Sep;72(Pt 9):2153–2157. doi: 10.1099/0022-1317-72-9-2153. [DOI] [PubMed] [Google Scholar]
  50. Rossmann M. G., Arnold E., Erickson J. W., Frankenberger E. A., Griffith J. P., Hecht H. J., Johnson J. E., Kamer G., Luo M., Mosser A. G. Structure of a human common cold virus and functional relationship to other picornaviruses. Nature. 1985 Sep 12;317(6033):145–153. doi: 10.1038/317145a0. [DOI] [PubMed] [Google Scholar]
  51. Rowlands D. J., Sangar D. V., Brown F. A comparative chemical and serological study of the full and empty particles of foot-and mouth disease virus. J Gen Virol. 1975 Mar;26(3):227–238. doi: 10.1099/0022-1317-26-3-227. [DOI] [PubMed] [Google Scholar]
  52. Rweyemamu M. M., Terry G., Pay T. W. Stability and immunogenicity of empty particles of foot-and-mouth disease virus. Arch Virol. 1979;59(1-2):69–79. doi: 10.1007/BF01317896. [DOI] [PubMed] [Google Scholar]
  53. Sancho J., Serrano L., Fersht A. R. Histidine residues at the N- and C-termini of alpha-helices: perturbed pKas and protein stability. Biochemistry. 1992 Mar 3;31(8):2253–2258. doi: 10.1021/bi00123a006. [DOI] [PubMed] [Google Scholar]
  54. Skern T., Torgersen H., Auer H., Kuechler E., Blaas D. Human rhinovirus mutants resistant to low pH. Virology. 1991 Aug;183(2):757–763. doi: 10.1016/0042-6822(91)91006-3. [DOI] [PubMed] [Google Scholar]
  55. Warwicker J. Model for the differential stabilities of rhinovirus and poliovirus to mild acidic pH, based on electrostatics calculations. J Mol Biol. 1992 Jan 5;223(1):247–257. doi: 10.1016/0022-2836(92)90729-4. [DOI] [PubMed] [Google Scholar]
  56. Willingmann P., Barnert H., Zeichhardt H., Habermehl K. O. Recovery of structurally intact and infectious poliovirus type 1 from HeLa cells during receptor-mediated endocytosis. Virology. 1989 Feb;168(2):417–420. doi: 10.1016/0042-6822(89)90286-9. [DOI] [PubMed] [Google Scholar]
  57. Zeichhardt H., Wetz K., Willingmann P., Habermehl K. O. Entry of poliovirus type 1 and Mouse Elberfeld (ME) virus into HEp-2 cells: receptor-mediated endocytosis and endosomal or lysosomal uncoating. J Gen Virol. 1985 Mar;66(Pt 3):483–492. doi: 10.1099/0022-1317-66-3-483. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES